{"title":"Harnessing Nature's Bounty: The Neuroprotective Potential of Phytoconstituents and Nanotechnology in Neurodegenerative Disease Therapeutics.","authors":"Siddhant Tripathi, Yashika Sharma, Dileep Kumar","doi":"10.2174/0118715273370166250610152453","DOIUrl":null,"url":null,"abstract":"<p><p>Investigations into the bioactive components of plant-based natural products indicate promising therapeutic potential for neurodegenerative diseases (NDs), including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). The loss and dysfunction of neurons characterize these disorders. Effective therapeutic guidelines are still elusive despite advances in our comprehension of NDs, in part because of unanswered questions about the safety and efficacy of natural therapies. On the other hand, preclinical models have shown that natural products-such as fruits, vegetables, nuts, herbs, and phytoconstituents found in freshwater and marine flora-have neuroprotective effects. These substances have the ability to work through a variety of pathways, halting cell death and reinstating neuronal activity. According to recent research, adding these phytoconstituents to nanocarriers, such as nanoparticles, can improve their selectivity and stability, possibly boosting the effectiveness of treatment. By making these agents more specific to target sites, nanotechnology presents a promising treatment option for NDs. Clinical trials assessing the efficacy of these natural compounds in treating neurological conditions are becoming more common as research advances, underscoring their potential as neuroprotective drugs. This study primarily focuses on the therapeutic efficacy of specific natural compounds and their bioactive components, which exhibit neuroprotective benefits in conditions associated with undiagnosed depression. Several preclinical models have demonstrated better results when natural derivatives are used, which has led to an increase in the use of natural therapies for treating NDs. Overall, despite ongoing difficulties, natural products have a great deal of promise for treating and preventing NDs; however, more research is needed to determine safe and effective treatment modalities.</p>","PeriodicalId":93947,"journal":{"name":"CNS & neurological disorders drug targets","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CNS & neurological disorders drug targets","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0118715273370166250610152453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Investigations into the bioactive components of plant-based natural products indicate promising therapeutic potential for neurodegenerative diseases (NDs), including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). The loss and dysfunction of neurons characterize these disorders. Effective therapeutic guidelines are still elusive despite advances in our comprehension of NDs, in part because of unanswered questions about the safety and efficacy of natural therapies. On the other hand, preclinical models have shown that natural products-such as fruits, vegetables, nuts, herbs, and phytoconstituents found in freshwater and marine flora-have neuroprotective effects. These substances have the ability to work through a variety of pathways, halting cell death and reinstating neuronal activity. According to recent research, adding these phytoconstituents to nanocarriers, such as nanoparticles, can improve their selectivity and stability, possibly boosting the effectiveness of treatment. By making these agents more specific to target sites, nanotechnology presents a promising treatment option for NDs. Clinical trials assessing the efficacy of these natural compounds in treating neurological conditions are becoming more common as research advances, underscoring their potential as neuroprotective drugs. This study primarily focuses on the therapeutic efficacy of specific natural compounds and their bioactive components, which exhibit neuroprotective benefits in conditions associated with undiagnosed depression. Several preclinical models have demonstrated better results when natural derivatives are used, which has led to an increase in the use of natural therapies for treating NDs. Overall, despite ongoing difficulties, natural products have a great deal of promise for treating and preventing NDs; however, more research is needed to determine safe and effective treatment modalities.