Developing a high-performing network computation of big bipartite network data toward alcohol use disorder treatment referrals.

Muhammad Tuan Amith, Sharon Andrews, Angela Heads, Bruno Kluwe-Schiavon, Atchyutha Choday, Ramya Poonam, Sai Venkat Ballem, Cui Tao, Jane Hamilton
{"title":"Developing a high-performing network computation of big bipartite network data toward alcohol use disorder treatment referrals.","authors":"Muhammad Tuan Amith, Sharon Andrews, Angela Heads, Bruno Kluwe-Schiavon, Atchyutha Choday, Ramya Poonam, Sai Venkat Ballem, Cui Tao, Jane Hamilton","doi":"10.1109/icsc64641.2025.00044","DOIUrl":null,"url":null,"abstract":"<p><p>Electronic health care records offer big data to mine and analyze towards improving public health outcomes. The information extracted, specifically social network data, could help us understand the primary care referrals for patients experiencing alcohol use disorder and wield that knowledge to better inform the engagement of this patient population. <i>Network exposure</i> and <i>affiliation exposure</i> models are two metrics that can be utilized to analyze the influence of social networks. We developed a core software library that address the scalability issue of our previous work. Our library computed high volume, randomly generated network graphs that range from 500-10,000 nodes (~126,000-40 million edges). This C library can be integrated with our previous work to handle high volume network data. Future plans include providing support for variant network exposure models and interfaces towards big network data analytics.</p>","PeriodicalId":89468,"journal":{"name":"Proceedings. IEEE International Conference on Semantic Computing","volume":"2025 ","pages":"253-258"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12212966/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Conference on Semantic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icsc64641.2025.00044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/19 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electronic health care records offer big data to mine and analyze towards improving public health outcomes. The information extracted, specifically social network data, could help us understand the primary care referrals for patients experiencing alcohol use disorder and wield that knowledge to better inform the engagement of this patient population. Network exposure and affiliation exposure models are two metrics that can be utilized to analyze the influence of social networks. We developed a core software library that address the scalability issue of our previous work. Our library computed high volume, randomly generated network graphs that range from 500-10,000 nodes (~126,000-40 million edges). This C library can be integrated with our previous work to handle high volume network data. Future plans include providing support for variant network exposure models and interfaces towards big network data analytics.

针对酒精使用障碍治疗转诊的大二部网络数据开发高性能网络计算。
电子医疗记录为挖掘和分析公共卫生成果提供了大数据。提取的信息,特别是社交网络数据,可以帮助我们了解经历酒精使用障碍的患者的初级保健转诊,并利用这些知识更好地告知这一患者群体的参与。网络暴露模型和隶属关系暴露模型是用来分析社会网络影响的两个指标。我们开发了一个核心软件库来解决我们以前工作中的可伸缩性问题。我们的库计算了大量随机生成的网络图,其范围从500-10,000个节点(~126,000- 4,000万个边)。这个C库可以与我们之前的工作集成,以处理大量网络数据。未来的计划包括支持各种网络暴露模型和面向大网络数据分析的接口。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信