{"title":"Unbalanced gene-level batch effects in single-cell data","authors":"","doi":"10.1038/s43588-025-00829-2","DOIUrl":null,"url":null,"abstract":"We developed group technical effects (GTE) as a quantitative metric for evaluating gene-level batch effects in single-cell data. It identifies highly batch-sensitive genes — the primary contributors to batch effects — that vary across datasets, and whose removal effectively mitigates the batch effects.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"5 8","pages":"610-611"},"PeriodicalIF":18.3000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-025-00829-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
We developed group technical effects (GTE) as a quantitative metric for evaluating gene-level batch effects in single-cell data. It identifies highly batch-sensitive genes — the primary contributors to batch effects — that vary across datasets, and whose removal effectively mitigates the batch effects.