Junfeng Wan, Yin Luo, Philippe Derreumaux, Guanghong Wei, Huiyu Li
{"title":"pH-Dependent β-Strand Alignment of the Alzheimer's Amyloid-β (16-22) Peptide.","authors":"Junfeng Wan, Yin Luo, Philippe Derreumaux, Guanghong Wei, Huiyu Li","doi":"10.1002/prot.70012","DOIUrl":null,"url":null,"abstract":"<p><p>The extracellular amyloid plaques of amyloid-β (Aβ) peptides formed in the human brain are an important pathological hallmark of Alzheimer's disease. There is evidence that pH affects the morphologies of fibrils and the kinetics of amyloid fibril formation. However, the underlying molecular mechanism is not well understood. In this study, as a first step to understand pH-modulated Aβ fibril formation, we investigated the conformations of Aβ (16-22) octamers by performing extensive all-atom replica exchange molecular dynamics simulations at both neutral and acidic pH. Our simulations showed that the residues Phe20 and Ala21 in the C terminal have higher β-sheet probability (78.8%, 55.8%) at acidic pH than (62.3%, 43.6%) at neutral pH. Out-of-register antiparallel β-strand alignments of the Aβ (16-22) peptide are predominantly in the 1-, 2-, and 3-residue shifts at both pH conditions, which agrees well with solid-state NMR results on Aβ peptides. We also found that there are multiple in-register and out-of-register parallel β-strand alignments under both pH conditions. However, the pH conditions affect the probability of β-strand alignments for the Aβ (16-22) peptide, and the residue-residue interaction of bilayer β-sheet and β-barrel are different at different pH conditions. Our analysis showed that the electrostatic interactions among peptides are much stronger at neutral pH than at acidic pH, while the vdW interactions are slightly stronger at acidic pH than at neutral pH. These results provide atomistic insight into the early stage of aggregation of amyloid-β (Aβ) peptides at acidic and neutral pH conditions.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteins-Structure Function and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.70012","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The extracellular amyloid plaques of amyloid-β (Aβ) peptides formed in the human brain are an important pathological hallmark of Alzheimer's disease. There is evidence that pH affects the morphologies of fibrils and the kinetics of amyloid fibril formation. However, the underlying molecular mechanism is not well understood. In this study, as a first step to understand pH-modulated Aβ fibril formation, we investigated the conformations of Aβ (16-22) octamers by performing extensive all-atom replica exchange molecular dynamics simulations at both neutral and acidic pH. Our simulations showed that the residues Phe20 and Ala21 in the C terminal have higher β-sheet probability (78.8%, 55.8%) at acidic pH than (62.3%, 43.6%) at neutral pH. Out-of-register antiparallel β-strand alignments of the Aβ (16-22) peptide are predominantly in the 1-, 2-, and 3-residue shifts at both pH conditions, which agrees well with solid-state NMR results on Aβ peptides. We also found that there are multiple in-register and out-of-register parallel β-strand alignments under both pH conditions. However, the pH conditions affect the probability of β-strand alignments for the Aβ (16-22) peptide, and the residue-residue interaction of bilayer β-sheet and β-barrel are different at different pH conditions. Our analysis showed that the electrostatic interactions among peptides are much stronger at neutral pH than at acidic pH, while the vdW interactions are slightly stronger at acidic pH than at neutral pH. These results provide atomistic insight into the early stage of aggregation of amyloid-β (Aβ) peptides at acidic and neutral pH conditions.
期刊介绍:
PROTEINS : Structure, Function, and Bioinformatics publishes original reports of significant experimental and analytic research in all areas of protein research: structure, function, computation, genetics, and design. The journal encourages reports that present new experimental or computational approaches for interpreting and understanding data from biophysical chemistry, structural studies of proteins and macromolecular assemblies, alterations of protein structure and function engineered through techniques of molecular biology and genetics, functional analyses under physiologic conditions, as well as the interactions of proteins with receptors, nucleic acids, or other specific ligands or substrates. Research in protein and peptide biochemistry directed toward synthesizing or characterizing molecules that simulate aspects of the activity of proteins, or that act as inhibitors of protein function, is also within the scope of PROTEINS. In addition to full-length reports, short communications (usually not more than 4 printed pages) and prediction reports are welcome. Reviews are typically by invitation; authors are encouraged to submit proposed topics for consideration.