Meghma Mitra, Amaya Sanz Rodriguez, Norman Delanty, Alan Beausang, Francesca M Brett, Michael A Farrell, Jane Cryan, Donncha F O'Brien, David Henshall, Maria F Cano-Abad, Tobias Engel
{"title":"The CALHM1 blocker CGP37157 increases seizure severity during status epilepticus in adult mice.","authors":"Meghma Mitra, Amaya Sanz Rodriguez, Norman Delanty, Alan Beausang, Francesca M Brett, Michael A Farrell, Jane Cryan, Donncha F O'Brien, David Henshall, Maria F Cano-Abad, Tobias Engel","doi":"10.1007/s11302-025-10103-9","DOIUrl":null,"url":null,"abstract":"<p><p>Epilepsy is one of the most common chronic brain diseases affecting up to 70 million people worldwide. Major challenges of epilepsy treatment include the high pharmacoresistance in patients and the lack of disease-modification. Extracellular adenosine 3'triphosphate (ATP), a key neurotransmitter in the activation of the purinergic signalling system, is increasingly recognized to contribute to pathological brain hyperexcitability in epilepsy. Consequently, targeting ATP-release mechanisms may constitute a new therapeutic strategy for seizure control and epilepsy. The calcium channel, Calcium Homeostasis Modulator 1 (CALHM1), a voltage-gated, non-selective ion channel that permits the passage of various cations and small molecules, is expressed in neurons and plays an essential role during neuronal excitability and neurotransmission. In addition to ions, CALHM1 also allows the passage of ATP into the extracellular space, activating thereby purinergic receptors. Here, we tested if the pharmacological blocking of CALHM1 via CGP37157 (7-chloro-5-(2-chlorophenyl)-3,5-dihydro-4,1-benzothiazepin-2-(1H)-one) alters the severity of intra-amygdala kainic acid-induced status epilepticus. Our results show that CGP37157 increased the severity of seizures during status epilepticus. In addition, CALHM1 protein levels are down-regulated in the hippocampus in epileptic mice and Temporal Lobe Epilepsy (TLE) patients. In summary, our results identify CALHM1 as a new contributor to seizures and suggest targeting of CALHM1 as new treatment strategy for epilepsy.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Purinergic Signalling","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11302-025-10103-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Epilepsy is one of the most common chronic brain diseases affecting up to 70 million people worldwide. Major challenges of epilepsy treatment include the high pharmacoresistance in patients and the lack of disease-modification. Extracellular adenosine 3'triphosphate (ATP), a key neurotransmitter in the activation of the purinergic signalling system, is increasingly recognized to contribute to pathological brain hyperexcitability in epilepsy. Consequently, targeting ATP-release mechanisms may constitute a new therapeutic strategy for seizure control and epilepsy. The calcium channel, Calcium Homeostasis Modulator 1 (CALHM1), a voltage-gated, non-selective ion channel that permits the passage of various cations and small molecules, is expressed in neurons and plays an essential role during neuronal excitability and neurotransmission. In addition to ions, CALHM1 also allows the passage of ATP into the extracellular space, activating thereby purinergic receptors. Here, we tested if the pharmacological blocking of CALHM1 via CGP37157 (7-chloro-5-(2-chlorophenyl)-3,5-dihydro-4,1-benzothiazepin-2-(1H)-one) alters the severity of intra-amygdala kainic acid-induced status epilepticus. Our results show that CGP37157 increased the severity of seizures during status epilepticus. In addition, CALHM1 protein levels are down-regulated in the hippocampus in epileptic mice and Temporal Lobe Epilepsy (TLE) patients. In summary, our results identify CALHM1 as a new contributor to seizures and suggest targeting of CALHM1 as new treatment strategy for epilepsy.
期刊介绍:
Nucleotides and nucleosides are primitive biological molecules that were utilized early in evolution both as intracellular energy sources and as extracellular signalling molecules. ATP was first identified as a neurotransmitter and later as a co-transmitter with all the established neurotransmitters in both peripheral and central nervous systems. Four subtypes of P1 (adenosine) receptors, 7 subtypes of P2X ion channel receptors and 8 subtypes of P2Y G protein-coupled receptors have currently been identified. Since P2 receptors were first cloned in the early 1990’s, there is clear evidence for the widespread distribution of both P1 and P2 receptor subtypes in neuronal and non-neuronal cells, including glial, immune, bone, muscle, endothelial, epithelial and endocrine cells.