{"title":"Discovery of novel cathepsin K inhibitors for osteoporosis treatment using a deep learning-based strategy.","authors":"Qi Li, Xue-Chun Han, Si-Rui Zhou, Yu Lu, Yu-Ji Wang, Jin-Kui Yang","doi":"10.1080/17460441.2025.2527686","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cathepsin K (CTSK), a cysteine protease of the papain family, exhibits high expression in activated osteoclasts, making it a key therapeutic target for osteoporosis. However, there are currently no CTSK inhibitors available for clinical use.</p><p><strong>Research design and methods: </strong>The authors employed a combination of deep learning approaches and experimental methods to identify novel CTSK inhibitors. Firstly, the authors utilized Chemprop to develop a predictive model for predicting CTSK inhibition. Subsequently, the top 100 predicted molecules were selected for experimental validation, with the most potent inhibitors chosen for further analysis, including enzyme kinetics, molecular docking, molecular dynamics simulations, and RANKL-induced osteoclastogenesis assays.</p><p><strong>Results: </strong>The authors identified six compounds exhibiting concentration-dependent CTSK inhibitory effects, with Quercetin, γ-Linolenic acid (GLA), and Benzyl isothiocyanate (BITC) demonstrating the highest potency. Enzyme kinetics studies revealed that these inhibitors employ distinct mechanisms of CTSK inhibition. Molecular dynamics simulations further showed that Quercetin and BITC form stable interactions at the CTSK active site. Moreover, in-vitro studies demonstrated that Quercetin and GLA significantly inhibit RANKL-induced osteoclastogenesis in RAW264.7 cells.</p><p><strong>Conclusions: </strong>This study led to the development of a deep learning model capable of predicting CTSK inhibitors and identified Quercetin, GLA, and BITC as promising candidates for the treatment of osteoporosis.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":" ","pages":"1-12"},"PeriodicalIF":6.0000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Opinion on Drug Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17460441.2025.2527686","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Cathepsin K (CTSK), a cysteine protease of the papain family, exhibits high expression in activated osteoclasts, making it a key therapeutic target for osteoporosis. However, there are currently no CTSK inhibitors available for clinical use.
Research design and methods: The authors employed a combination of deep learning approaches and experimental methods to identify novel CTSK inhibitors. Firstly, the authors utilized Chemprop to develop a predictive model for predicting CTSK inhibition. Subsequently, the top 100 predicted molecules were selected for experimental validation, with the most potent inhibitors chosen for further analysis, including enzyme kinetics, molecular docking, molecular dynamics simulations, and RANKL-induced osteoclastogenesis assays.
Results: The authors identified six compounds exhibiting concentration-dependent CTSK inhibitory effects, with Quercetin, γ-Linolenic acid (GLA), and Benzyl isothiocyanate (BITC) demonstrating the highest potency. Enzyme kinetics studies revealed that these inhibitors employ distinct mechanisms of CTSK inhibition. Molecular dynamics simulations further showed that Quercetin and BITC form stable interactions at the CTSK active site. Moreover, in-vitro studies demonstrated that Quercetin and GLA significantly inhibit RANKL-induced osteoclastogenesis in RAW264.7 cells.
Conclusions: This study led to the development of a deep learning model capable of predicting CTSK inhibitors and identified Quercetin, GLA, and BITC as promising candidates for the treatment of osteoporosis.
期刊介绍:
Expert Opinion on Drug Discovery (ISSN 1746-0441 [print], 1746-045X [electronic]) is a MEDLINE-indexed, peer-reviewed, international journal publishing review articles on novel technologies involved in the drug discovery process, leading to new leads and reduced attrition rates. Each article is structured to incorporate the author’s own expert opinion on the scope for future development.
The Editors welcome:
Reviews covering chemoinformatics; bioinformatics; assay development; novel screening technologies; in vitro/in vivo models; structure-based drug design; systems biology
Drug Case Histories examining the steps involved in the preclinical and clinical development of a particular drug
The audience consists of scientists and managers in the healthcare and pharmaceutical industry, academic pharmaceutical scientists and other closely related professionals looking to enhance the success of their drug candidates through optimisation at the preclinical level.