Planar cell polarity coordination in a cnidarian embryo provides clues to animal body axis evolution.

IF 6.4 1区 生物学 Q1 BIOLOGY
eLife Pub Date : 2025-07-02 DOI:10.7554/eLife.104508
Julie Uveira, Antoine Donati, Marvin Léria, Marion Lechable, François Lahaye, Christine Vesque, Evelyn Houliston, Tsuyoshi Momose
{"title":"Planar cell polarity coordination in a cnidarian embryo provides clues to animal body axis evolution.","authors":"Julie Uveira, Antoine Donati, Marvin Léria, Marion Lechable, François Lahaye, Christine Vesque, Evelyn Houliston, Tsuyoshi Momose","doi":"10.7554/eLife.104508","DOIUrl":null,"url":null,"abstract":"<p><p>Body axis specification is a crucial event in animal embryogenesis and was an essential evolutionary innovation for founding the animal kingdom. This process involves two distinct components that coordinate to establish the spatial organisation of the embryo: initiation of cascades of regionalised gene expression and orientation of morphogenetic processes such as body elongation. Intense interest in the first component has revealed Wnt/β-catenin signalling as ancestrally responsible for initiating regional gene expression, but the evolutionary origin of oriented morphogenesis has received little attention. Here, by addressing the cell and morphological basis of body axis development in embryos of the cnidarian <i>Clytia hemisphaerica</i>, we have uncovered a simple and likely ancestral coordination mechanism between Wnt/β-catenin signalling and directed morphogenesis. We show that the ligand Wnt3, known to initiate oral gene expression via localised Wnt/β-catenin pathway activation, also has a key β-catenin-independent role in globally orienting planar cell polarity (PCP) to direct morphogenesis along the oral-aboral axis. This PCP orientation occurs in two distinct steps: local orientation by Wnt3 and global propagation by conserved core PCP protein interactions along the body axis. From these findings, we propose novel scenarios for PCP-driven symmetry-breaking underlying the emergence of the animal body plan.</p>","PeriodicalId":11640,"journal":{"name":"eLife","volume":"14 ","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12221298/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eLife","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7554/eLife.104508","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Body axis specification is a crucial event in animal embryogenesis and was an essential evolutionary innovation for founding the animal kingdom. This process involves two distinct components that coordinate to establish the spatial organisation of the embryo: initiation of cascades of regionalised gene expression and orientation of morphogenetic processes such as body elongation. Intense interest in the first component has revealed Wnt/β-catenin signalling as ancestrally responsible for initiating regional gene expression, but the evolutionary origin of oriented morphogenesis has received little attention. Here, by addressing the cell and morphological basis of body axis development in embryos of the cnidarian Clytia hemisphaerica, we have uncovered a simple and likely ancestral coordination mechanism between Wnt/β-catenin signalling and directed morphogenesis. We show that the ligand Wnt3, known to initiate oral gene expression via localised Wnt/β-catenin pathway activation, also has a key β-catenin-independent role in globally orienting planar cell polarity (PCP) to direct morphogenesis along the oral-aboral axis. This PCP orientation occurs in two distinct steps: local orientation by Wnt3 and global propagation by conserved core PCP protein interactions along the body axis. From these findings, we propose novel scenarios for PCP-driven symmetry-breaking underlying the emergence of the animal body plan.

刺胞胚胎的平面细胞极性协调为动物体轴进化提供了线索。
体轴规范是动物胚胎发生过程中的一个重要事件,是动物王国建立过程中必不可少的进化创新。这一过程包括协调建立胚胎空间组织的两个不同组成部分:区域化基因表达级联的启动和形态发生过程的定向,如身体伸长。对第一个成分的强烈兴趣揭示了Wnt/β-catenin信号传导在祖先上负责启动区域基因表达,但定向形态发生的进化起源却很少受到关注。本研究通过研究刺胞动物半球克莱蒂亚(Clytia hemisphaerica)胚胎体轴发育的细胞和形态学基础,揭示了Wnt/β-catenin信号传导与定向形态发生之间一种简单而可能的远古协调机制。我们发现,已知通过局部Wnt/β-catenin通路激活启动口腔基因表达的配体Wnt3,在全球定向平面细胞极性(PCP)中也具有关键的β-catenin独立作用,从而沿着口-口轴指导形态发生。这种PCP定向发生在两个不同的步骤:Wnt3的局部定向和保守的核心PCP蛋白沿体轴相互作用的全局传播。根据这些发现,我们提出了pcp驱动的对称性破坏的新场景,这些对称性破坏是动物身体计划出现的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
eLife
eLife BIOLOGY-
CiteScore
12.90
自引率
3.90%
发文量
3122
审稿时长
17 weeks
期刊介绍: eLife is a distinguished, not-for-profit, peer-reviewed open access scientific journal that specializes in the fields of biomedical and life sciences. eLife is known for its selective publication process, which includes a variety of article types such as: Research Articles: Detailed reports of original research findings. Short Reports: Concise presentations of significant findings that do not warrant a full-length research article. Tools and Resources: Descriptions of new tools, technologies, or resources that facilitate scientific research. Research Advances: Brief reports on significant scientific advancements that have immediate implications for the field. Scientific Correspondence: Short communications that comment on or provide additional information related to published articles. Review Articles: Comprehensive overviews of a specific topic or field within the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信