Inference technique for the synaptic conductances in rhythmically active networks and application to respiratory central pattern generation circuits.

IF 6.4 1区 生物学 Q1 BIOLOGY
eLife Pub Date : 2025-07-02 DOI:10.7554/eLife.101959
Yaroslav Molkov, Anke Borgmann, Hidehiko Koizumi, Noriyuki Hama, Ruli Zhang, Jeffrey Smith
{"title":"Inference technique for the synaptic conductances in rhythmically active networks and application to respiratory central pattern generation circuits.","authors":"Yaroslav Molkov, Anke Borgmann, Hidehiko Koizumi, Noriyuki Hama, Ruli Zhang, Jeffrey Smith","doi":"10.7554/eLife.101959","DOIUrl":null,"url":null,"abstract":"<p><p>Unraveling synaptic interactions between excitatory and inhibitory interneurons within rhythmic neural circuits, such as central pattern generation (CPG) circuits for rhythmic motor behaviors, is critical for deciphering circuit interactions and functional architecture, which is a major problem for understanding how neural circuits operate. Here, we present a general method for extracting and separating patterns of inhibitory and excitatory synaptic conductances at high temporal resolution from single neuronal intracellular recordings in rhythmically active networks. These post-synaptic conductances reflect the combined synaptic inputs from the key interacting neuronal populations and can reveal the functional connectome of the active circuits. To illustrate the applicability of our analytic technique, we employ our method to infer the synaptic conductance profiles in identified rhythmically active interneurons within key microcircuits of the mammalian (mature rat) brainstem respiratory CPG and provide a perspective on how our approach can resolve the functional interactions and circuit organization of these interneuron populations. We demonstrate the versatility of our approach, which can be applied to any other rhythmic circuits where conditions allow for neuronal intracellular recordings.</p>","PeriodicalId":11640,"journal":{"name":"eLife","volume":"13 ","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12221296/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eLife","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7554/eLife.101959","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Unraveling synaptic interactions between excitatory and inhibitory interneurons within rhythmic neural circuits, such as central pattern generation (CPG) circuits for rhythmic motor behaviors, is critical for deciphering circuit interactions and functional architecture, which is a major problem for understanding how neural circuits operate. Here, we present a general method for extracting and separating patterns of inhibitory and excitatory synaptic conductances at high temporal resolution from single neuronal intracellular recordings in rhythmically active networks. These post-synaptic conductances reflect the combined synaptic inputs from the key interacting neuronal populations and can reveal the functional connectome of the active circuits. To illustrate the applicability of our analytic technique, we employ our method to infer the synaptic conductance profiles in identified rhythmically active interneurons within key microcircuits of the mammalian (mature rat) brainstem respiratory CPG and provide a perspective on how our approach can resolve the functional interactions and circuit organization of these interneuron populations. We demonstrate the versatility of our approach, which can be applied to any other rhythmic circuits where conditions allow for neuronal intracellular recordings.

节律性活动网络突触传导的推断技术及其在呼吸中枢模式产生回路中的应用。
揭示节律性神经回路中兴奋性和抑制性中间神经元之间的突触相互作用,如节律性运动行为的中枢模式生成(CPG)回路,对于破译回路相互作用和功能结构至关重要,这是理解神经回路如何运作的主要问题。在这里,我们提出了一种通用的方法来提取和分离抑制性和兴奋性突触传导模式在高时间分辨率从单个神经元细胞内记录节律活跃的网络。这些突触后电导反映了来自关键相互作用的神经元群的联合突触输入,并可以揭示活动回路的功能连接组。为了说明我们的分析技术的适用性,我们采用我们的方法来推断哺乳动物(成熟大鼠)脑干呼吸CPG关键微电路中确定的节律活跃中间神经元的突触电导谱,并提供了我们的方法如何解决这些中间神经元群体的功能相互作用和电路组织的观点。我们展示了我们方法的多功能性,它可以应用于任何其他有节奏的电路,条件允许神经元细胞内记录。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
eLife
eLife BIOLOGY-
CiteScore
12.90
自引率
3.90%
发文量
3122
审稿时长
17 weeks
期刊介绍: eLife is a distinguished, not-for-profit, peer-reviewed open access scientific journal that specializes in the fields of biomedical and life sciences. eLife is known for its selective publication process, which includes a variety of article types such as: Research Articles: Detailed reports of original research findings. Short Reports: Concise presentations of significant findings that do not warrant a full-length research article. Tools and Resources: Descriptions of new tools, technologies, or resources that facilitate scientific research. Research Advances: Brief reports on significant scientific advancements that have immediate implications for the field. Scientific Correspondence: Short communications that comment on or provide additional information related to published articles. Review Articles: Comprehensive overviews of a specific topic or field within the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信