Synthesis and Antimicrobial Activity of Silver/Copper Oxide/Clay Hybrid Nanocomposites Against Gram-Positive and Gram-Negative Bacteria.

IF 2.1 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Masoud Fardin, Narges Sadr, Amirmohammad Rezvani, Faezeh Hajhosseinjavaheri, Erfaneh Dalghi
{"title":"Synthesis and Antimicrobial Activity of Silver/Copper Oxide/Clay Hybrid Nanocomposites Against Gram-Positive and Gram-Negative Bacteria.","authors":"Masoud Fardin, Narges Sadr, Amirmohammad Rezvani, Faezeh Hajhosseinjavaheri, Erfaneh Dalghi","doi":"10.2174/0113892002392051250612052515","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The rapid surge in bacterial resistance to classical antibiotics and antimicrobial agents has driven researchers to identify new classes of antimicrobial agents. At the nanoscale, nanotechnological progress has strongly underscored the application of silver and copper since they present high antimicrobial activities toward gram-positive and gram-negative bacteria. Nanostructures containing these two elements-all the more so for hybrid nanocomposites-have been scantily the subject of investigated. The present work aims to develop and study a silver/copper oxide/clay hybrid nanocomposite.</p><p><strong>Methods: </strong>Nanocomposites of silver, copper oxide, and their hybrid with clay were synthesized via chemical precipitation under controlled pH (9-11) and temperature (60-90°C) conditions. The antibacterial activity was assessed using standard 0.5 McFarland-adjusted bacterial inocula. Characterization was performed using FTIR, XRD, FESEM, and TEM techniques. MIC and MBC were determined through serial dilution, and data were analyzed using one-way ANOVA and Tukey's test (SPSS v26).</p><p><strong>Results: </strong>The results indicated that the fabricated nanocomposite was impure, with nanosilver particles measuring 30-40 nm and copper oxide particles measuring 200-250 nm. The morphological properties of synthesized Ag/Cu2O/clay nanocomposites were evaluated using X-ray diffractometer analysis. The minimum inhibitory concentration (MIC) of the hybrid nanocomposite against Staphylococcus aureus and Bacillus subtilis was 1024 μg/ml, and for Escherichia coli and Pseudomonas aeruginosa 2048 μg/ml. The minimum bactericidal concentration (MBC) against Staphylococcus aureus and Bacillus subtilis was 4096 μg/ml, and for Escherichia coli 4096 μg/ml, and Pseudomonas aeruginosa 8192 μg/ml.</p><p><strong>Conclusion: </strong>These results showed that the antimicrobial property of silver/copper/clay hybrid nanocomposite was better than copper/silver and clay nanocomposite against gram-positive bacteria, while showing a similar effect against gram-negative bacteria.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892002392051250612052515","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The rapid surge in bacterial resistance to classical antibiotics and antimicrobial agents has driven researchers to identify new classes of antimicrobial agents. At the nanoscale, nanotechnological progress has strongly underscored the application of silver and copper since they present high antimicrobial activities toward gram-positive and gram-negative bacteria. Nanostructures containing these two elements-all the more so for hybrid nanocomposites-have been scantily the subject of investigated. The present work aims to develop and study a silver/copper oxide/clay hybrid nanocomposite.

Methods: Nanocomposites of silver, copper oxide, and their hybrid with clay were synthesized via chemical precipitation under controlled pH (9-11) and temperature (60-90°C) conditions. The antibacterial activity was assessed using standard 0.5 McFarland-adjusted bacterial inocula. Characterization was performed using FTIR, XRD, FESEM, and TEM techniques. MIC and MBC were determined through serial dilution, and data were analyzed using one-way ANOVA and Tukey's test (SPSS v26).

Results: The results indicated that the fabricated nanocomposite was impure, with nanosilver particles measuring 30-40 nm and copper oxide particles measuring 200-250 nm. The morphological properties of synthesized Ag/Cu2O/clay nanocomposites were evaluated using X-ray diffractometer analysis. The minimum inhibitory concentration (MIC) of the hybrid nanocomposite against Staphylococcus aureus and Bacillus subtilis was 1024 μg/ml, and for Escherichia coli and Pseudomonas aeruginosa 2048 μg/ml. The minimum bactericidal concentration (MBC) against Staphylococcus aureus and Bacillus subtilis was 4096 μg/ml, and for Escherichia coli 4096 μg/ml, and Pseudomonas aeruginosa 8192 μg/ml.

Conclusion: These results showed that the antimicrobial property of silver/copper/clay hybrid nanocomposite was better than copper/silver and clay nanocomposite against gram-positive bacteria, while showing a similar effect against gram-negative bacteria.

银/氧化铜/粘土杂化纳米复合材料的合成及其对革兰氏阳性和革兰氏阴性菌的抑菌活性
背景:细菌对经典抗生素和抗微生物药物的耐药性迅速增加,促使研究人员发现新的抗微生物药物类别。在纳米尺度上,纳米技术的进步强调了银和铜的应用,因为它们对革兰氏阳性和革兰氏阴性细菌具有很高的抗菌活性。含有这两种元素的纳米结构——尤其是杂化纳米复合材料——很少被研究。本工作旨在开发和研究一种银/氧化铜/粘土混合纳米复合材料。方法:在控制pH(9-11)和温度(60-90℃)的条件下,通过化学沉淀法合成银、氧化铜及其与粘土的杂化纳米复合材料。采用标准的0.5麦克法兰校正细菌接种剂进行抑菌活性评价。采用FTIR, XRD, FESEM和TEM技术进行表征。MIC和MBC采用系列稀释法测定,数据采用单因素方差分析和Tukey检验(SPSS v26)进行分析。结果:制备的纳米复合材料不纯,纳米银颗粒尺寸为30 ~ 40 nm,氧化铜颗粒尺寸为200 ~ 250 nm。利用x射线衍射仪对合成的Ag/Cu2O/粘土纳米复合材料的形貌进行了表征。混合纳米复合材料对金黄色葡萄球菌和枯草芽孢杆菌的最低抑制浓度为1024 μg/ml,对大肠杆菌和铜绿假单胞菌的最低抑制浓度为2048 μg/ml。对金黄色葡萄球菌和枯草芽孢杆菌最低杀菌浓度为4096 μg/ml,对大肠杆菌最低杀菌浓度为4096 μg/ml,对铜绿假单胞菌最低杀菌浓度为8192 μg/ml。结论:银/铜/粘土混合纳米复合材料对革兰氏阳性菌的抑菌性能优于铜/银/粘土复合材料,对革兰氏阴性菌的抑菌效果相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current drug metabolism
Current drug metabolism 医学-生化与分子生物学
CiteScore
4.30
自引率
4.30%
发文量
81
审稿时长
4-8 weeks
期刊介绍: Current Drug Metabolism aims to cover all the latest and outstanding developments in drug metabolism, pharmacokinetics, and drug disposition. The journal serves as an international forum for the publication of full-length/mini review, research articles and guest edited issues in drug metabolism. Current Drug Metabolism is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the most important developments. The journal covers the following general topic areas: pharmaceutics, pharmacokinetics, toxicology, and most importantly drug metabolism. More specifically, in vitro and in vivo drug metabolism of phase I and phase II enzymes or metabolic pathways; drug-drug interactions and enzyme kinetics; pharmacokinetics, pharmacokinetic-pharmacodynamic modeling, and toxicokinetics; interspecies differences in metabolism or pharmacokinetics, species scaling and extrapolations; drug transporters; target organ toxicity and interindividual variability in drug exposure-response; extrahepatic metabolism; bioactivation, reactive metabolites, and developments for the identification of drug metabolites. Preclinical and clinical reviews describing the drug metabolism and pharmacokinetics of marketed drugs or drug classes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信