Hong Duo, Yanwei Yang, Jun Luo, Yumeng Cao, Qian Liu, Jiarui Zhang, Siqi Du, Jian You, Guqing Zhang, Qifa Ye, Huaqin Pan
{"title":"Modulatory role of radioprotective 105 in mitigating oxidative stress and ferroptosis via the HO-1/SLC7A11/GPX4 axis in sepsis-mediated renal injury.","authors":"Hong Duo, Yanwei Yang, Jun Luo, Yumeng Cao, Qian Liu, Jiarui Zhang, Siqi Du, Jian You, Guqing Zhang, Qifa Ye, Huaqin Pan","doi":"10.1038/s41420-025-02578-7","DOIUrl":null,"url":null,"abstract":"<p><p>Sepsis-associated acute kidney injury (SA-AKI) is a critical condition characterized by high morbidity and mortality rates, particularly in intensive care settings. This study focuses on RP105, a pattern recognition receptor, exploring its role in moderating the mechanisms of oxidative stress and ferroptosis during SA-AKI, offering insights into its potential as a therapeutic target. SA-AKI model was established using RP105 knockout (KO) and wild-type (WT) mice through cecal ligation and puncture (CLP). Comprehensive evaluations included the assessment of ferroptosis markers and the expression levels of pro-inflammatory cytokines. RP105 expression was markedly reduced in the kidneys following CLP induction, correlating with worsened renal outcomes. Compared to the Sham group, RP105<sup>-/-</sup> mice displayed heightened renal damage, increased levels of oxidative stress markers, and enhanced lipid peroxidation. Notably, the deficiency of RP105 led to increased macrophage infiltration and a shift towards pro-inflammatory phenotypes, which further potentiated ferroptosis and exacerbated renal tissue damage. By influencing macrophage behavior and mitigating inflammatory responses. RP105 deficiency exacerbates macrophage-induced inflammation, oxidative stress, and ferroptosis, forming a vicious cycle that leads to more severe renal injury. These findings underscore the pivotal role of RP105 in mitigating oxidative stress and suppressing ferroptosis in the context of SA-AKI through regulation of the HO-1/SLC7A11/GPX4 axis. By preventing macrophage polarization toward a pro-inflammatory phenotype, RP105 alleviates inflammatory responses and tissue damage, highlighting its potential as a therapeutic target. Thus, RP105 emerges as a promising therapeutic candidate for mitigating sepsis-induced renal damage.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"11 1","pages":"290"},"PeriodicalIF":7.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12217763/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-025-02578-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sepsis-associated acute kidney injury (SA-AKI) is a critical condition characterized by high morbidity and mortality rates, particularly in intensive care settings. This study focuses on RP105, a pattern recognition receptor, exploring its role in moderating the mechanisms of oxidative stress and ferroptosis during SA-AKI, offering insights into its potential as a therapeutic target. SA-AKI model was established using RP105 knockout (KO) and wild-type (WT) mice through cecal ligation and puncture (CLP). Comprehensive evaluations included the assessment of ferroptosis markers and the expression levels of pro-inflammatory cytokines. RP105 expression was markedly reduced in the kidneys following CLP induction, correlating with worsened renal outcomes. Compared to the Sham group, RP105-/- mice displayed heightened renal damage, increased levels of oxidative stress markers, and enhanced lipid peroxidation. Notably, the deficiency of RP105 led to increased macrophage infiltration and a shift towards pro-inflammatory phenotypes, which further potentiated ferroptosis and exacerbated renal tissue damage. By influencing macrophage behavior and mitigating inflammatory responses. RP105 deficiency exacerbates macrophage-induced inflammation, oxidative stress, and ferroptosis, forming a vicious cycle that leads to more severe renal injury. These findings underscore the pivotal role of RP105 in mitigating oxidative stress and suppressing ferroptosis in the context of SA-AKI through regulation of the HO-1/SLC7A11/GPX4 axis. By preventing macrophage polarization toward a pro-inflammatory phenotype, RP105 alleviates inflammatory responses and tissue damage, highlighting its potential as a therapeutic target. Thus, RP105 emerges as a promising therapeutic candidate for mitigating sepsis-induced renal damage.
期刊介绍:
Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary.
Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.