Guaranteed False Data Injection Attack Without Physical Model

IF 3.2 Q3 ENERGY & FUELS
Chenhan Xiao;Napoleon Costilla-Enriquez;Yang Weng
{"title":"Guaranteed False Data Injection Attack Without Physical Model","authors":"Chenhan Xiao;Napoleon Costilla-Enriquez;Yang Weng","doi":"10.1109/OAJPE.2025.3580108","DOIUrl":null,"url":null,"abstract":"Smart grids are increasingly vulnerable to False Data Injection Attacks (FDIAs) due to their growing reliance on interconnected digital systems. Many existing FDIA techniques assume access to critical physical model information, such as grid topology, to successfully bypass Bad Data Detection (BDD). However, this assumption is often impractical, as utilities may restrict access to this data, or the evolving nature of distribution grids—particularly with the integration of renewable energy—can render this information unavailable. Current methods that address the absence of physical model lack formal guarantees for BDD evasion. To bridge this gap, we propose a novel physical-model-free FDIA framework that 1) bypasses BDD with formal guarantees and 2) maximizes the attack impact without requiring explicit physical model. Our approach leverages an autoencoder (AE) with a regularized latent space to enforce physical consistency, using historical measurements to replicate the residual error distribution, ensuring BDD evasion. Additionally, we integrate a Generative Adversarial Network (GAN) to explore the measurement manifold and induce the most significant state changes, enhancing the impact of the attack. The key innovation lies in the AE-GAN hybrid model’s ability to replicate the residual error distribution while maximizing attack efficacy, offering a performance guarantee that existing methods lack. We validate our method across 11 representative grid systems, using real power profiles simulated in MATPOWER, and demonstrate its consistent ability to bypass BDD by preserving the residual error distribution. The results highlight the robustness and generalizability of the proposed FDIA framework.","PeriodicalId":56187,"journal":{"name":"IEEE Open Access Journal of Power and Energy","volume":"12 ","pages":"429-441"},"PeriodicalIF":3.2000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11037430","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Access Journal of Power and Energy","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11037430/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Smart grids are increasingly vulnerable to False Data Injection Attacks (FDIAs) due to their growing reliance on interconnected digital systems. Many existing FDIA techniques assume access to critical physical model information, such as grid topology, to successfully bypass Bad Data Detection (BDD). However, this assumption is often impractical, as utilities may restrict access to this data, or the evolving nature of distribution grids—particularly with the integration of renewable energy—can render this information unavailable. Current methods that address the absence of physical model lack formal guarantees for BDD evasion. To bridge this gap, we propose a novel physical-model-free FDIA framework that 1) bypasses BDD with formal guarantees and 2) maximizes the attack impact without requiring explicit physical model. Our approach leverages an autoencoder (AE) with a regularized latent space to enforce physical consistency, using historical measurements to replicate the residual error distribution, ensuring BDD evasion. Additionally, we integrate a Generative Adversarial Network (GAN) to explore the measurement manifold and induce the most significant state changes, enhancing the impact of the attack. The key innovation lies in the AE-GAN hybrid model’s ability to replicate the residual error distribution while maximizing attack efficacy, offering a performance guarantee that existing methods lack. We validate our method across 11 representative grid systems, using real power profiles simulated in MATPOWER, and demonstrate its consistent ability to bypass BDD by preserving the residual error distribution. The results highlight the robustness and generalizability of the proposed FDIA framework.
无物理模型的保证虚假数据注入攻击
智能电网越来越依赖于互联数字系统,因此越来越容易受到虚假数据注入攻击(FDIAs)。许多现有的FDIA技术假定可以访问关键的物理模型信息,例如网格拓扑,以成功地绕过坏数据检测(BDD)。然而,这种假设通常是不切实际的,因为公用事业可能会限制对这些数据的访问,或者配电网的不断发展的性质——特别是与可再生能源的整合——会使这些信息不可用。当前解决物理模型缺失的方法缺乏对BDD规避的正式保证。为了弥补这一差距,我们提出了一种新的无物理模型的FDIA框架,该框架1)通过正式保证绕过BDD, 2)在不需要显式物理模型的情况下最大化攻击影响。我们的方法利用具有正则化潜在空间的自动编码器(AE)来强制物理一致性,使用历史测量来复制残差分布,确保BDD规避。此外,我们集成了生成对抗网络(GAN)来探索测量流形并诱导最显著的状态变化,从而增强攻击的影响。关键创新在于AE-GAN混合模型能够在最大限度地提高攻击效率的同时复制剩余误差分布,提供现有方法所缺乏的性能保证。我们在11个具有代表性的电网系统中验证了我们的方法,使用在MATPOWER中模拟的真实功率分布,并通过保留剩余误差分布来证明其绕过BDD的一致能力。结果表明了所提出的FDIA框架的鲁棒性和泛化性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.80
自引率
5.30%
发文量
45
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信