Efficient Knowledge-Guided Self-Evolving Intelligent Behavioral Control for Autonomous Vehicles

IF 19.2 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Qiao Peng;Kailong Liu;Jingda Wu;Amir Khajepour
{"title":"Efficient Knowledge-Guided Self-Evolving Intelligent Behavioral Control for Autonomous Vehicles","authors":"Qiao Peng;Kailong Liu;Jingda Wu;Amir Khajepour","doi":"10.1109/JAS.2024.124746","DOIUrl":null,"url":null,"abstract":"Dear Editor, This letter addresses the enhancement of autonomous vehicles' (AVs) behavior control systems through the application of reinforcement learning (RL) techniques. It presents a novel approach to efficient knowledge-guided self-evolutionary intelligent decision-making by integrating human intervention as prior knowledge into the RL's exploratory learning process. Specifically, we propose an innovative intervention-based reward shaping mechanism and develop a novel experience replay mechanism to augment the efficiency of leveraging guided knowledge within the framework of off-policy RL. The proposed methodology significantly enhances the performance of RL-based behavior control strategies in complex scenarios for AVs. Illustrative results indicate that, relative to existing state-of-the-art methods, our approach yields superior learning efficiency and improved autonomous driving performance.","PeriodicalId":54230,"journal":{"name":"Ieee-Caa Journal of Automatica Sinica","volume":"12 7","pages":"1522-1524"},"PeriodicalIF":19.2000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11062710","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieee-Caa Journal of Automatica Sinica","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11062710/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Dear Editor, This letter addresses the enhancement of autonomous vehicles' (AVs) behavior control systems through the application of reinforcement learning (RL) techniques. It presents a novel approach to efficient knowledge-guided self-evolutionary intelligent decision-making by integrating human intervention as prior knowledge into the RL's exploratory learning process. Specifically, we propose an innovative intervention-based reward shaping mechanism and develop a novel experience replay mechanism to augment the efficiency of leveraging guided knowledge within the framework of off-policy RL. The proposed methodology significantly enhances the performance of RL-based behavior control strategies in complex scenarios for AVs. Illustrative results indicate that, relative to existing state-of-the-art methods, our approach yields superior learning efficiency and improved autonomous driving performance.
基于知识引导的自动驾驶汽车高效自进化智能行为控制
亲爱的编辑:这封信旨在通过应用强化学习(RL)技术来增强自动驾驶汽车(av)的行为控制系统。通过将人为干预作为先验知识整合到RL的探索性学习过程中,提出了一种有效的知识引导自进化智能决策的新方法。具体而言,我们提出了一种创新的基于干预的奖励形成机制,并开发了一种新的经验重放机制,以提高在非政策强化学习框架内利用指导性知识的效率。该方法显著提高了基于强化学习的自动驾驶汽车复杂场景行为控制策略的性能。说明性结果表明,相对于现有的最先进的方法,我们的方法产生了卓越的学习效率和改进的自动驾驶性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ieee-Caa Journal of Automatica Sinica
Ieee-Caa Journal of Automatica Sinica Engineering-Control and Systems Engineering
CiteScore
23.50
自引率
11.00%
发文量
880
期刊介绍: The IEEE/CAA Journal of Automatica Sinica is a reputable journal that publishes high-quality papers in English on original theoretical/experimental research and development in the field of automation. The journal covers a wide range of topics including automatic control, artificial intelligence and intelligent control, systems theory and engineering, pattern recognition and intelligent systems, automation engineering and applications, information processing and information systems, network-based automation, robotics, sensing and measurement, and navigation, guidance, and control. Additionally, the journal is abstracted/indexed in several prominent databases including SCIE (Science Citation Index Expanded), EI (Engineering Index), Inspec, Scopus, SCImago, DBLP, CNKI (China National Knowledge Infrastructure), CSCD (Chinese Science Citation Database), and IEEE Xplore.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信