Optimal Sensor Scheduling for Remote State Estimation with Partial Channel Observation

IF 19.2 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Bowen Sun;Xianghui Cao
{"title":"Optimal Sensor Scheduling for Remote State Estimation with Partial Channel Observation","authors":"Bowen Sun;Xianghui Cao","doi":"10.1109/JAS.2025.125180","DOIUrl":null,"url":null,"abstract":"Dear Editor, This letter investigates the optimal transmission scheduling problem in remote state estimation systems over an unknown wireless channel. We propose a partially observable Markov decision Process (POMDP) framework to model the sensor scheduling problem. By truncating and simplifying the POMDP problem, we have established the properties of the optimal solution under the POMDP model, through a fixed-point contraction method, and have shown that the threshold structure of the POMDP solution is not easily attainable. Subsequently, we obtained a suboptimal solution via Q-learning. Numerical simulations are used to demonstrate the efficacy of the proposed Q-learning approach.","PeriodicalId":54230,"journal":{"name":"Ieee-Caa Journal of Automatica Sinica","volume":"12 7","pages":"1510-1512"},"PeriodicalIF":19.2000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11004458","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieee-Caa Journal of Automatica Sinica","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11004458/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Dear Editor, This letter investigates the optimal transmission scheduling problem in remote state estimation systems over an unknown wireless channel. We propose a partially observable Markov decision Process (POMDP) framework to model the sensor scheduling problem. By truncating and simplifying the POMDP problem, we have established the properties of the optimal solution under the POMDP model, through a fixed-point contraction method, and have shown that the threshold structure of the POMDP solution is not easily attainable. Subsequently, we obtained a suboptimal solution via Q-learning. Numerical simulations are used to demonstrate the efficacy of the proposed Q-learning approach.
基于部分信道观测的远程状态估计传感器优化调度
这封信研究了未知无线信道上远程状态估计系统的最优传输调度问题。提出了一个部分可观察马尔可夫决策过程(POMDP)框架来建模传感器调度问题。通过截断和简化POMDP问题,我们通过不动点收缩法建立了POMDP模型下最优解的性质,并证明了POMDP解的阈值结构不易达到。随后,我们通过Q-learning得到了一个次优解。数值模拟证明了所提出的q -学习方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ieee-Caa Journal of Automatica Sinica
Ieee-Caa Journal of Automatica Sinica Engineering-Control and Systems Engineering
CiteScore
23.50
自引率
11.00%
发文量
880
期刊介绍: The IEEE/CAA Journal of Automatica Sinica is a reputable journal that publishes high-quality papers in English on original theoretical/experimental research and development in the field of automation. The journal covers a wide range of topics including automatic control, artificial intelligence and intelligent control, systems theory and engineering, pattern recognition and intelligent systems, automation engineering and applications, information processing and information systems, network-based automation, robotics, sensing and measurement, and navigation, guidance, and control. Additionally, the journal is abstracted/indexed in several prominent databases including SCIE (Science Citation Index Expanded), EI (Engineering Index), Inspec, Scopus, SCImago, DBLP, CNKI (China National Knowledge Infrastructure), CSCD (Chinese Science Citation Database), and IEEE Xplore.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信