Solving synchromodal container transportation problem using a genetic algorithm

Ananthakrishnan Vaikkathe, Abdelhamid Benaini, Jaouad Boukachour
{"title":"Solving synchromodal container transportation problem using a genetic algorithm","authors":"Ananthakrishnan Vaikkathe,&nbsp;Abdelhamid Benaini,&nbsp;Jaouad Boukachour","doi":"10.1016/j.multra.2025.100229","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a Genetic Algorithm(GA) to solve the synchromodal transportation problem. The objective is to find a feasible transportation path for container transportation while minimizing travel duration and <span><math><mrow><mi>C</mi><msub><mi>O</mi><mn>2</mn></msub></mrow></math></span> emissions. The transportation network is modeled in a multigraph and a novel chromosome encoding method, that takes into account the parallel edges is proposed, along with the GA operators. The parameters of the GA are set using Taguchi analysis. The model is validated on instances based on the Seine Axis in France while considering three modes of transport: Barge, Train, and Truck as well as a benchmark instance. The GA finds optimal solutions for small instances and provides good enough solutions with a low deviation from the best-known solution in larger instances.</div></div>","PeriodicalId":100933,"journal":{"name":"Multimodal Transportation","volume":"4 4","pages":"Article 100229"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimodal Transportation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772586325000437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a Genetic Algorithm(GA) to solve the synchromodal transportation problem. The objective is to find a feasible transportation path for container transportation while minimizing travel duration and CO2 emissions. The transportation network is modeled in a multigraph and a novel chromosome encoding method, that takes into account the parallel edges is proposed, along with the GA operators. The parameters of the GA are set using Taguchi analysis. The model is validated on instances based on the Seine Axis in France while considering three modes of transport: Barge, Train, and Truck as well as a benchmark instance. The GA finds optimal solutions for small instances and provides good enough solutions with a low deviation from the best-known solution in larger instances.
用遗传算法求解集装箱同运问题
本文提出了一种求解同步运输问题的遗传算法。目标是为集装箱运输找到一条可行的运输路径,同时最大限度地减少旅行时间和二氧化碳排放。将运输网络建模为多图模型,提出了一种考虑平行边的染色体编码方法和遗传算子。采用田口分析法对遗传算法的参数进行了设置。该模型以法国塞纳河为例进行了验证,同时考虑了驳船、火车和卡车三种运输方式以及一个基准实例。遗传算法为小实例找到最优解,并在较大实例中提供足够好的解决方案,与最知名的解决方案偏差很小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信