Simultaneous achievement of superior tensile properties and melt corrosion resistance in a single-phase BCC Ti32Nb32Ta32W4 multi-principal element alloy

IF 4.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Jiangchao Hao , Zeyu Ding , Mingliang Wang , Yiping Lu
{"title":"Simultaneous achievement of superior tensile properties and melt corrosion resistance in a single-phase BCC Ti32Nb32Ta32W4 multi-principal element alloy","authors":"Jiangchao Hao ,&nbsp;Zeyu Ding ,&nbsp;Mingliang Wang ,&nbsp;Yiping Lu","doi":"10.1016/j.intermet.2025.108904","DOIUrl":null,"url":null,"abstract":"<div><div>Molten metal corrosion critically compromises the structural integrity of nuclear reactors, inducing accelerated material degradation that jeopardizes operational safety and plant reliability. The development of advanced corrosion-resistant structural materials emerges as an essential engineering solution to mitigate these multifaceted challenges. Here, we present a novel refractory Ta<sub>32</sub>Nb<sub>32</sub>Ti<sub>32</sub>W<sub>4</sub> high-entropy alloy (HEA) with single-phase BCC structure that demonstrates exceptional synergy between mechanical strength and molten metal corrosion resistance. Remarkably, the alloy exhibits corrosion resistance against molten cerium (Ce) comparable to pure tantalum (Ta) benchmark materials, while achieving 50 % cost reduction in raw materials. Mechanical characterization reveals remarkable enhancement with ultimate tensile strength (703.7 MPa) and yield strength (682 MPa) exceeding pure Ta counterparts by 119 % and 151 % respectively, while maintaining comparable ductility (20.4 % elongation vs. Ta's 25 %). This breakthrough establishes a new paradigm for developing cost-effective structural materials in nuclear coolant systems through refractory HEA design strategy.</div></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"185 ","pages":"Article 108904"},"PeriodicalIF":4.3000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intermetallics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966979525002699","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Molten metal corrosion critically compromises the structural integrity of nuclear reactors, inducing accelerated material degradation that jeopardizes operational safety and plant reliability. The development of advanced corrosion-resistant structural materials emerges as an essential engineering solution to mitigate these multifaceted challenges. Here, we present a novel refractory Ta32Nb32Ti32W4 high-entropy alloy (HEA) with single-phase BCC structure that demonstrates exceptional synergy between mechanical strength and molten metal corrosion resistance. Remarkably, the alloy exhibits corrosion resistance against molten cerium (Ce) comparable to pure tantalum (Ta) benchmark materials, while achieving 50 % cost reduction in raw materials. Mechanical characterization reveals remarkable enhancement with ultimate tensile strength (703.7 MPa) and yield strength (682 MPa) exceeding pure Ta counterparts by 119 % and 151 % respectively, while maintaining comparable ductility (20.4 % elongation vs. Ta's 25 %). This breakthrough establishes a new paradigm for developing cost-effective structural materials in nuclear coolant systems through refractory HEA design strategy.

Abstract Image

在单相BCC Ti32Nb32Ta32W4多主元素合金中同时获得了优异的拉伸性能和耐熔体腐蚀性能
熔融金属腐蚀严重损害核反应堆的结构完整性,导致材料加速降解,危及运行安全和核电站的可靠性。开发先进的耐腐蚀结构材料是缓解这些多方面挑战的基本工程解决方案。在此,我们提出了一种具有单相BCC结构的新型耐火Ta32Nb32Ti32W4高熵合金(HEA),该合金在机械强度和熔融金属耐腐蚀性之间表现出卓越的协同作用。值得注意的是,该合金对熔融铈(Ce)的耐腐蚀性与纯钽(Ta)基准材料相当,同时原材料成本降低了50%。力学特性表明,与纯Ta相比,其极限抗拉强度(703.7 MPa)和屈服强度(682mpa)分别提高了119%和151%,同时保持了相当的延展性(伸长率为20.4%,而Ta为25%)。这一突破为通过耐火HEA设计策略开发具有成本效益的核冷却剂系统结构材料建立了新的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Intermetallics
Intermetallics 工程技术-材料科学:综合
CiteScore
7.80
自引率
9.10%
发文量
291
审稿时长
37 days
期刊介绍: This journal is a platform for publishing innovative research and overviews for advancing our understanding of the structure, property, and functionality of complex metallic alloys, including intermetallics, metallic glasses, and high entropy alloys. The journal reports the science and engineering of metallic materials in the following aspects: Theories and experiments which address the relationship between property and structure in all length scales. Physical modeling and numerical simulations which provide a comprehensive understanding of experimental observations. Stimulated methodologies to characterize the structure and chemistry of materials that correlate the properties. Technological applications resulting from the understanding of property-structure relationship in materials. Novel and cutting-edge results warranting rapid communication. The journal also publishes special issues on selected topics and overviews by invitation only.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信