MicroCT-based vascular imaging in bone and peri-implant tissues

David Haberthür , Oleksiy-Zakhar Khoma , Tim Hoessly , Eugenio Zoni , Marianna Kruithof-de Julio , Stewart D. Ryan , Myriam Grunewald , Benjamin Bellón , Rebecca Sandgren , Stephan Handschuh , Benjamin E. Pippenger , Dieter Bosshardt , Valentin Djonov , Ruslan Hlushchuk
{"title":"MicroCT-based vascular imaging in bone and peri-implant tissues","authors":"David Haberthür ,&nbsp;Oleksiy-Zakhar Khoma ,&nbsp;Tim Hoessly ,&nbsp;Eugenio Zoni ,&nbsp;Marianna Kruithof-de Julio ,&nbsp;Stewart D. Ryan ,&nbsp;Myriam Grunewald ,&nbsp;Benjamin Bellón ,&nbsp;Rebecca Sandgren ,&nbsp;Stephan Handschuh ,&nbsp;Benjamin E. Pippenger ,&nbsp;Dieter Bosshardt ,&nbsp;Valentin Djonov ,&nbsp;Ruslan Hlushchuk","doi":"10.1016/j.tmater.2025.100074","DOIUrl":null,"url":null,"abstract":"<div><div>Angiogenesis is essential for skeletal development, bone healing, and regeneration. Improved non-destructive, three-dimensional (3D) imaging of the vasculature within bone tissue benefits many research areas, especially implantology and tissue engineering. X-ray microcomputed tomography (microCT) is a well-suited non-destructive 3D imaging technique for bone morphology. For microCT-based detection of vessels, it is paramount to use contrast enhancement. Limited differences in radiopacity between perfusion agents and mineralized bone make their distinct segmentation problematic and have been a major drawback of this approach. A decalcification step resolves this issue but inhibits the simultaneous assessment of bone microstructure and vascular morphology. The problem of contrasting becomes further complicated in samples with metal implants. This study describes contrast-enhanced microCT-based visualization of vasculature within bone tissue in small and large animal models, also in the vicinity of the metal implants. We present simultaneous microvascular and bone imaging in murine tibia, a murine bone metastatic model, the pulp chamber, gingiva, and periodontal ligaments. In a large animal model (minipig), we performed visualization and segmentation of different tissue types and vessels in the hemimandible containing metal implants. We further demonstrate the potential of dual-energy imaging in distinguishing bone tissue from the applied contrast agents. This work introduces a non-destructive approach for 3D imaging of vasculature within soft and hard tissues near metal implants in a large animal model.</div></div>","PeriodicalId":101254,"journal":{"name":"Tomography of Materials and Structures","volume":"9 ","pages":"Article 100074"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tomography of Materials and Structures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949673X25000270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Angiogenesis is essential for skeletal development, bone healing, and regeneration. Improved non-destructive, three-dimensional (3D) imaging of the vasculature within bone tissue benefits many research areas, especially implantology and tissue engineering. X-ray microcomputed tomography (microCT) is a well-suited non-destructive 3D imaging technique for bone morphology. For microCT-based detection of vessels, it is paramount to use contrast enhancement. Limited differences in radiopacity between perfusion agents and mineralized bone make their distinct segmentation problematic and have been a major drawback of this approach. A decalcification step resolves this issue but inhibits the simultaneous assessment of bone microstructure and vascular morphology. The problem of contrasting becomes further complicated in samples with metal implants. This study describes contrast-enhanced microCT-based visualization of vasculature within bone tissue in small and large animal models, also in the vicinity of the metal implants. We present simultaneous microvascular and bone imaging in murine tibia, a murine bone metastatic model, the pulp chamber, gingiva, and periodontal ligaments. In a large animal model (minipig), we performed visualization and segmentation of different tissue types and vessels in the hemimandible containing metal implants. We further demonstrate the potential of dual-energy imaging in distinguishing bone tissue from the applied contrast agents. This work introduces a non-destructive approach for 3D imaging of vasculature within soft and hard tissues near metal implants in a large animal model.
基于microct的骨和种植体周围组织血管成像
血管生成对骨骼发育、骨愈合和再生至关重要。改进的非破坏性的,三维(3D)成像的血管在骨组织中受益于许多研究领域,特别是种植和组织工程。x射线微计算机断层扫描(microCT)是一种非常适合于骨形态学的非破坏性三维成像技术。对于基于微ct的血管检测,使用对比度增强是至关重要的。灌注剂和矿化骨之间放射不透性的有限差异使得它们的明显分割存在问题,这是该方法的主要缺点。脱钙步骤解决了这个问题,但抑制了骨微观结构和血管形态的同时评估。在带有金属植入物的样品中,对比问题变得更加复杂。本研究描述了基于对比增强显微ct的骨组织内血管系统的可视化,在小型和大型动物模型中,也在金属植入物附近。我们在小鼠胫骨、小鼠骨转移模型、牙髓腔、牙龈和牙周韧带中同时进行微血管和骨成像。在大型动物模型(迷你猪)中,我们对半可食用含金属植入物的不同组织类型和血管进行了可视化和分割。我们进一步证明了双能成像从应用造影剂中区分骨组织的潜力。这项工作介绍了一种非破坏性的方法,用于在大型动物模型中金属植入物附近的软硬组织内进行血管三维成像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信