Yong Li , Yisong Qian , Evan Huang , Zain Schwarz , Hannah Tai , Katherine Tillock , Tianhua Lei , Xiaofeng Yang , Mingui Fu
{"title":"GlycoRNA-L and glycoRNA-S mediate human monocyte adhesion via binding to Siglec-5","authors":"Yong Li , Yisong Qian , Evan Huang , Zain Schwarz , Hannah Tai , Katherine Tillock , Tianhua Lei , Xiaofeng Yang , Mingui Fu","doi":"10.1016/j.bbamcr.2025.120017","DOIUrl":null,"url":null,"abstract":"<div><div>It was recently reported that RNAs can be glycosylated, <em>and</em> such glycosylated RNAs (referred to as glycoRNAs) are located on the outer cell surface. We here reported that there are two forms of glycoRNAs, named as glycoRNA-L and glycoRNA-S, robustly expressed in human monocytes. We verified that the glycoRNA-S specifically detected in human monocytes is synthesized by enzyme-catalyzed conjugation, but not artificial products of labelling probe. RNase-treatment removed both glycoRNA-L and glycoRNA-S, suggesting that they are localized on cell surface. Removing glycoRNAs significantly suppressed the interaction of human monocytes with endothelial cells, suggesting that glycoRNAs mediate human monocyte adhesion. Using flow cytometry, immunoprecipitation and northern blotting we identified Siglec-5 as the binding receptor of glycoRNAs. Siglec-5 is expressed in human endothelial cells but presented on endothelial cell surface when endothelial cells are activated. We observed that glycoRNA-L was heavily labeled with sialic acid, whereas glycoRNA-S was heavily labeled with <em>N</em>-acetylgalactosamine and <em>N</em>-acetylglucosamine. Together, these results demonstrate that two forms of glycoRNAs exist in human monocytes, which may play significant role in controlling the interaction of human monocytes and endothelial cells and contribute to the pathogenesis of inflammatory diseases.</div></div>","PeriodicalId":8754,"journal":{"name":"Biochimica et biophysica acta. Molecular cell research","volume":"1872 7","pages":"Article 120017"},"PeriodicalIF":3.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular cell research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167488925001223","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
It was recently reported that RNAs can be glycosylated, and such glycosylated RNAs (referred to as glycoRNAs) are located on the outer cell surface. We here reported that there are two forms of glycoRNAs, named as glycoRNA-L and glycoRNA-S, robustly expressed in human monocytes. We verified that the glycoRNA-S specifically detected in human monocytes is synthesized by enzyme-catalyzed conjugation, but not artificial products of labelling probe. RNase-treatment removed both glycoRNA-L and glycoRNA-S, suggesting that they are localized on cell surface. Removing glycoRNAs significantly suppressed the interaction of human monocytes with endothelial cells, suggesting that glycoRNAs mediate human monocyte adhesion. Using flow cytometry, immunoprecipitation and northern blotting we identified Siglec-5 as the binding receptor of glycoRNAs. Siglec-5 is expressed in human endothelial cells but presented on endothelial cell surface when endothelial cells are activated. We observed that glycoRNA-L was heavily labeled with sialic acid, whereas glycoRNA-S was heavily labeled with N-acetylgalactosamine and N-acetylglucosamine. Together, these results demonstrate that two forms of glycoRNAs exist in human monocytes, which may play significant role in controlling the interaction of human monocytes and endothelial cells and contribute to the pathogenesis of inflammatory diseases.
期刊介绍:
BBA Molecular Cell Research focuses on understanding the mechanisms of cellular processes at the molecular level. These include aspects of cellular signaling, signal transduction, cell cycle, apoptosis, intracellular trafficking, secretory and endocytic pathways, biogenesis of cell organelles, cytoskeletal structures, cellular interactions, cell/tissue differentiation and cellular enzymology. Also included are studies at the interface between Cell Biology and Biophysics which apply for example novel imaging methods for characterizing cellular processes.