Songheng Li , Yanteng Zhang , Congyu Zou , Lipei Zhang , Fei Li , Qiang Liu
{"title":"Transformer attention-based neural network for cognitive score estimation from sMRI data","authors":"Songheng Li , Yanteng Zhang , Congyu Zou , Lipei Zhang , Fei Li , Qiang Liu","doi":"10.1016/j.compbiomed.2025.110579","DOIUrl":null,"url":null,"abstract":"<div><div>Accurately predicting cognitive scores based on structural MRI holds significant clinical value for understanding the pathological stages of dementia and forecasting Alzheimer’s disease (AD). Some existing deep learning methods often depend on anatomical priors, overlooking individual-specific structural differences during AD progression. To address these limitations, this work proposes a deep neural network that incorporates Transformer attention to jointly predict multiple cognitive scores, including ADAS, CDRSB, and MMSE. The architecture first employs a 3D convolutional neural network backbone to encode sMRI, capturing preliminary local structural information. Then an improved Transformer attention block integrated with 3D positional encoding and 3D convolutional layer to adaptively capture discriminative imaging features across the brain, thereby focusing on key cognitive-related regions effectively. Finally, an attention-aware regression network enables the joint prediction of multiple clinical scores. Experimental results demonstrate that our method outperforms some existing traditional and deep learning methods based on the ADNI dataset. Further qualitative analysis reveals that the dementia-related brain regions identified by the model hold important biological significance, effectively enhancing the performance of cognitive score prediction. Our code is publicly available at: <span><span>https://github.com/lshsx/CTA_MRI</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"196 ","pages":"Article 110579"},"PeriodicalIF":7.0000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482525009308","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Accurately predicting cognitive scores based on structural MRI holds significant clinical value for understanding the pathological stages of dementia and forecasting Alzheimer’s disease (AD). Some existing deep learning methods often depend on anatomical priors, overlooking individual-specific structural differences during AD progression. To address these limitations, this work proposes a deep neural network that incorporates Transformer attention to jointly predict multiple cognitive scores, including ADAS, CDRSB, and MMSE. The architecture first employs a 3D convolutional neural network backbone to encode sMRI, capturing preliminary local structural information. Then an improved Transformer attention block integrated with 3D positional encoding and 3D convolutional layer to adaptively capture discriminative imaging features across the brain, thereby focusing on key cognitive-related regions effectively. Finally, an attention-aware regression network enables the joint prediction of multiple clinical scores. Experimental results demonstrate that our method outperforms some existing traditional and deep learning methods based on the ADNI dataset. Further qualitative analysis reveals that the dementia-related brain regions identified by the model hold important biological significance, effectively enhancing the performance of cognitive score prediction. Our code is publicly available at: https://github.com/lshsx/CTA_MRI.
期刊介绍:
Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.