Aqueous-Triggered Self-Destructive Persistent Luminescent Nanoparticles for Dynamic Hierarchical Security Encoding

IF 6.4 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Yiqing Chen, Zhishan Chen, Xingzhong Chen, Ziqing Mao, Hongqiang Zhu, Jingrui Guo, Jialong Xu, Ziyi Lin, Shaoan Zhang, Yang Li
{"title":"Aqueous-Triggered Self-Destructive Persistent Luminescent Nanoparticles for Dynamic Hierarchical Security Encoding","authors":"Yiqing Chen, Zhishan Chen, Xingzhong Chen, Ziqing Mao, Hongqiang Zhu, Jingrui Guo, Jialong Xu, Ziyi Lin, Shaoan Zhang, Yang Li","doi":"10.1039/d5qi01219h","DOIUrl":null,"url":null,"abstract":"Persistent luminescence has emerged as a robust platform for anti-counterfeiting applications due to its exceptional spatial-temporal decoding capability. Yet, conventional strategies often suffer from uniform emission patterns and predictable replication, compromising their security. Herein, we present “Snap-PLNPs”—near-infrared emitting CaS: Tm persistent luminescent nanoparticles engineered to undergo aqueous-triggered self-destruction via a hydrolysis mechanism. In contrast to traditional photophysical approaches, this chemically initiated degradation irreversibly terminates the luminescence, ensuring that security information can be decoded only once. Moreover, by incorporating an additional SiO₂ shell, we introduce a programmable delay in the hydrolysis process, thereby modulating the duration of the emission and adding a temporal regulation layer. This dual control—combining instantaneous chemical deactivation with time-resolved modulation—establishes a dynamic hierarchical security encoding framework. When embedded into laser-engraved logos, these CaS: Tm@SiO₂ hybrids enable a novel triple-layer anti-counterfeiting strategy that integrates spatial, temporal, and chemical dimensions. Our results underscore the potential of Snap-PLNPs as a next-generation platform for robust and adaptive security technologies.","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":"3 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5qi01219h","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Persistent luminescence has emerged as a robust platform for anti-counterfeiting applications due to its exceptional spatial-temporal decoding capability. Yet, conventional strategies often suffer from uniform emission patterns and predictable replication, compromising their security. Herein, we present “Snap-PLNPs”—near-infrared emitting CaS: Tm persistent luminescent nanoparticles engineered to undergo aqueous-triggered self-destruction via a hydrolysis mechanism. In contrast to traditional photophysical approaches, this chemically initiated degradation irreversibly terminates the luminescence, ensuring that security information can be decoded only once. Moreover, by incorporating an additional SiO₂ shell, we introduce a programmable delay in the hydrolysis process, thereby modulating the duration of the emission and adding a temporal regulation layer. This dual control—combining instantaneous chemical deactivation with time-resolved modulation—establishes a dynamic hierarchical security encoding framework. When embedded into laser-engraved logos, these CaS: Tm@SiO₂ hybrids enable a novel triple-layer anti-counterfeiting strategy that integrates spatial, temporal, and chemical dimensions. Our results underscore the potential of Snap-PLNPs as a next-generation platform for robust and adaptive security technologies.
用于动态分层安全编码的水触发自毁持久发光纳米粒子
由于其卓越的时空解码能力,持续发光已成为防伪应用的强大平台。然而,传统的策略往往受到统一的发射模式和可预测的复制的影响,从而损害了它们的安全性。在这里,我们提出了“Snap-PLNPs”——近红外发射CaS: Tm持久性发光纳米颗粒,通过水解机制进行水触发的自毁。与传统的光物理方法相比,这种化学引发的降解不可逆转地终止了发光,确保安全信息只能被解码一次。此外,通过加入一个额外的SiO₂壳,我们在水解过程中引入了一个可编程的延迟,从而调节了发射的持续时间并增加了一个时间调节层。这种双重控制-结合瞬时化学失活和时间分辨调制-建立了一个动态分层安全编码框架。这些ca: Tm@SiO₂混合材料嵌入到激光雕刻的标识中,可以实现空间、时间、化学维度相结合的新型三层防伪策略。我们的研究结果强调了Snap-PLNPs作为下一代健壮和自适应安全技术平台的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信