Si─O Molecular Engineering Enhances Cathode-Anode Interface Stability for High-Loading and High-Voltage Layered Cathode-Lithium Metal Batteries.

Shangjuan Yang, Zhoujie Lao, Zhuo Han, Hai Su, Guanyou Xiao, Guangmin Zhou, Danfeng Zhang, Yan-Bing He
{"title":"Si─O Molecular Engineering Enhances Cathode-Anode Interface Stability for High-Loading and High-Voltage Layered Cathode-Lithium Metal Batteries.","authors":"Shangjuan Yang, Zhoujie Lao, Zhuo Han, Hai Su, Guanyou Xiao, Guangmin Zhou, Danfeng Zhang, Yan-Bing He","doi":"10.1002/anie.202508008","DOIUrl":null,"url":null,"abstract":"<p><p>Nickel-rich layered cathodes and lithium metal anode are promising for the next generation high-energy-density batteries. However, the unstable electrode-electrolyte interface induces structural degradation and battery failure under high-voltage and high-loading conditions. Herein, we report a fluorosilane-coupled electrolyte stabilizer with 1H, 1H, 2H, 2H-perfluorooctyltrimethoxysilane (PFOTMS), which presents higher adsorption energy with LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> cathode than solvents through the conjugation of Si─O bonds and therefore is oxidized on its surface to derive an interfacial layer rich in F and Si─O species. This architecture effectively stabilizes the cathode structure, suppresses transition metal migration, and promotes Li<sup>+</sup> conduction and uniform deposition, which also suppresses the side reactions of electrolyte with both cathode and anode. This unique interfacial stabilization mechanism enables the Li||NCM811 battery to achieve a capacity retention rate of 80.8% after 600 cycles at 4.7 V. The Li||LiCoO<sub>2</sub> cell with a high mass loading of 20 mg cm<sup>-2</sup> achieves a remarkably high-capacity retention of 92.79% after 500 cycles at 4.4 V. This work proposes an interfacial stabilization that overcomes high-voltage limitations in practical nickel-rich cathode/lithium metal batteries.</p>","PeriodicalId":520556,"journal":{"name":"Angewandte Chemie (International ed. in English)","volume":" ","pages":"e202508008"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie (International ed. in English)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/anie.202508008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nickel-rich layered cathodes and lithium metal anode are promising for the next generation high-energy-density batteries. However, the unstable electrode-electrolyte interface induces structural degradation and battery failure under high-voltage and high-loading conditions. Herein, we report a fluorosilane-coupled electrolyte stabilizer with 1H, 1H, 2H, 2H-perfluorooctyltrimethoxysilane (PFOTMS), which presents higher adsorption energy with LiNi0.8Co0.1Mn0.1O2 cathode than solvents through the conjugation of Si─O bonds and therefore is oxidized on its surface to derive an interfacial layer rich in F and Si─O species. This architecture effectively stabilizes the cathode structure, suppresses transition metal migration, and promotes Li+ conduction and uniform deposition, which also suppresses the side reactions of electrolyte with both cathode and anode. This unique interfacial stabilization mechanism enables the Li||NCM811 battery to achieve a capacity retention rate of 80.8% after 600 cycles at 4.7 V. The Li||LiCoO2 cell with a high mass loading of 20 mg cm-2 achieves a remarkably high-capacity retention of 92.79% after 500 cycles at 4.4 V. This work proposes an interfacial stabilization that overcomes high-voltage limitations in practical nickel-rich cathode/lithium metal batteries.

Si─O分子工程提高高负载高压层状阴极锂金属电池的阴极-阳极界面稳定性。
富镍层状阴极和锂金属阳极是下一代高能量密度电池的发展方向。然而,在高压和高负载条件下,不稳定的电极-电解质界面会导致结构退化和电池失效。本文报道了一种含1H, 1H, 2H, 2H-全氟辛基三甲氧基硅烷(PFOTMS)的氟硅烷偶联电解质稳定剂,该稳定剂通过Si─O键的共轭作用,对LiNi0.8Co0.1Mn0.1O2阴极具有比溶剂更高的吸附能,因此在其表面被氧化生成富F和Si─O物质的界面层。这种结构有效地稳定了阴极结构,抑制了过渡金属的迁移,促进了Li+的传导和均匀沉积,也抑制了电解质与阴极和阳极的副反应。这种独特的界面稳定机制使Li||NCM811电池在4.7 V下循环600次后的容量保持率达到80.8%。高质量负载为20 mg cm-2的Li||LiCoO2电池在4.4 V下循环500次后,其容量保持率达到了92.79%。这项工作提出了一种界面稳定化方法,克服了实际富镍阴极/锂金属电池的高电压限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信