Esra Yuce, Muhammet Emin Sahin, Hasan Ulutas, Mustafa Fatih Erkoç
{"title":"Efficient Cerebral Infarction Segmentation Using U-Net and U-Net3 + Models.","authors":"Esra Yuce, Muhammet Emin Sahin, Hasan Ulutas, Mustafa Fatih Erkoç","doi":"10.1007/s10278-025-01587-3","DOIUrl":null,"url":null,"abstract":"<p><p>Cerebral infarction remains a leading cause of mortality and long-term disability globally, underscoring the critical importance of early diagnosis and timely intervention to enhance patient outcomes. This study introduces a novel approach to cerebral infarction segmentation using a novel dataset comprising MRI scans of 110 patients, retrospectively collected from Yozgat Bozok University Research Hospital. Two convolutional neural network architectures, the basic U-Net and the advanced U-Net3 + , are employed to segment infarction regions with high precision. Ground-truth annotations are generated under the supervision of an experienced radiologist, and data augmentation techniques are applied to address dataset limitations, resulting in 6732 balanced images for training, validation, and testing. Performance evaluation is conducted using metrics such as the dice score, Intersection over Union (IoU), pixel accuracy, and specificity. The basic U-Net achieved superior performance with a dice score of 0.8947, a mean IoU of 0.8798, a pixel accuracy of 0.9963, and a specificity of 0.9984, outperforming U-Net3 + despite its simpler architecture. U-Net3 + , with its complex structure and advanced features, delivered competitive results, highlighting the potential trade-off between model complexity and performance in medical imaging tasks. This study underscores the significance of leveraging deep learning for precise and efficient segmentation of cerebral infarction. The results demonstrate the capability of CNN-based architectures to support medical decision-making, offering a promising pathway for advancing stroke diagnosis and treatment planning.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-025-01587-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Cerebral infarction remains a leading cause of mortality and long-term disability globally, underscoring the critical importance of early diagnosis and timely intervention to enhance patient outcomes. This study introduces a novel approach to cerebral infarction segmentation using a novel dataset comprising MRI scans of 110 patients, retrospectively collected from Yozgat Bozok University Research Hospital. Two convolutional neural network architectures, the basic U-Net and the advanced U-Net3 + , are employed to segment infarction regions with high precision. Ground-truth annotations are generated under the supervision of an experienced radiologist, and data augmentation techniques are applied to address dataset limitations, resulting in 6732 balanced images for training, validation, and testing. Performance evaluation is conducted using metrics such as the dice score, Intersection over Union (IoU), pixel accuracy, and specificity. The basic U-Net achieved superior performance with a dice score of 0.8947, a mean IoU of 0.8798, a pixel accuracy of 0.9963, and a specificity of 0.9984, outperforming U-Net3 + despite its simpler architecture. U-Net3 + , with its complex structure and advanced features, delivered competitive results, highlighting the potential trade-off between model complexity and performance in medical imaging tasks. This study underscores the significance of leveraging deep learning for precise and efficient segmentation of cerebral infarction. The results demonstrate the capability of CNN-based architectures to support medical decision-making, offering a promising pathway for advancing stroke diagnosis and treatment planning.