Assessing advanced handwritten text recognition engines for digitizing historical documents.

C A Romein, A Rabus, G Leifert, P B Ströbel
{"title":"Assessing advanced handwritten text recognition engines for digitizing historical documents.","authors":"C A Romein, A Rabus, G Leifert, P B Ströbel","doi":"10.1007/s42803-025-00100-0","DOIUrl":null,"url":null,"abstract":"<p><p>This study provides critical insights and evaluates the performance of state-of-the-art Handwritten Text Recognition (HTR) engines-PyLaia, HTR + , IDA, TrOCR-f, and Transkribus' proprietary Transformer-based \"supermodel\" Titan-to digitize historical documents. Using a diverse range of datasets that include different scripts, this research assesses each engine's accuracy and efficiency in handling multilingual content, complex styles, abbreviations, and historical orthography. Results indicate that, while all engines can be trained or fine-tuned to improve performance, Titan and TrOCR-f exhibit superior out-of-the-box capabilities for Latin-script documents. PyLaia, IDA, and HTR + excel in specific non-Latin scripts when specifically trained or fine-tuned. This study underscores the importance of training, fine-tuning, and integrating language models, providing critical insights for future advancements in HTR technology and its application in the digital humanities.</p>","PeriodicalId":91018,"journal":{"name":"International journal of digital humanities","volume":"7 1","pages":"115-134"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12202554/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of digital humanities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42803-025-00100-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/12 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study provides critical insights and evaluates the performance of state-of-the-art Handwritten Text Recognition (HTR) engines-PyLaia, HTR + , IDA, TrOCR-f, and Transkribus' proprietary Transformer-based "supermodel" Titan-to digitize historical documents. Using a diverse range of datasets that include different scripts, this research assesses each engine's accuracy and efficiency in handling multilingual content, complex styles, abbreviations, and historical orthography. Results indicate that, while all engines can be trained or fine-tuned to improve performance, Titan and TrOCR-f exhibit superior out-of-the-box capabilities for Latin-script documents. PyLaia, IDA, and HTR + excel in specific non-Latin scripts when specifically trained or fine-tuned. This study underscores the importance of training, fine-tuning, and integrating language models, providing critical insights for future advancements in HTR technology and its application in the digital humanities.

评估用于数字化历史文献的高级手写文本识别引擎。
本研究提供了关键的见解,并评估了最先进的手写文本识别(HTR)引擎(pylaia, HTR +, IDA, TrOCR-f和Transkribus专有的基于transformer的“超模”titan)的性能,以数字化历史文档。使用包括不同脚本的各种数据集,本研究评估了每个引擎在处理多语言内容、复杂风格、缩写和历史正字法方面的准确性和效率。结果表明,虽然所有引擎都可以通过训练或微调来提高性能,但Titan和TrOCR-f在拉丁脚本文档方面表现出了卓越的开箱即用能力。PyLaia、IDA和HTR +在经过专门训练或微调后,在特定的非拉丁文字中表现出色。这项研究强调了培训、微调和整合语言模型的重要性,为HTR技术的未来发展及其在数字人文学科中的应用提供了重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信