{"title":"Setting new benchmarks in AI-driven infrared structure elucidation†","authors":"Marvin Alberts, Federico Zipoli and Teodoro Laino","doi":"10.1039/D5DD00131E","DOIUrl":null,"url":null,"abstract":"<p >Automated structure elucidation from infrared (IR) spectra represents a significant breakthrough in analytical chemistry, having recently gained momentum through the application of Transformer-based language models. In this work, we improve our original Transformer architecture, refine spectral data representations, and implement novel augmentation and decoding strategies to significantly increase performance. We report a Top-1 accuracy of 63.79% and a Top-10 accuracy of 83.95% compared to the current performance of state-of-the-art models of 53.56% and 80.36%, respectively. Our findings not only set a new performance benchmark but also strengthen confidence in the promising future of AI-driven IR spectroscopy as a practical and powerful tool for structure elucidation. To facilitate broad adoption among chemical laboratories and domain experts, we openly share our models and code.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 7","pages":" 1936-1943"},"PeriodicalIF":6.2000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12203481/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00131e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Automated structure elucidation from infrared (IR) spectra represents a significant breakthrough in analytical chemistry, having recently gained momentum through the application of Transformer-based language models. In this work, we improve our original Transformer architecture, refine spectral data representations, and implement novel augmentation and decoding strategies to significantly increase performance. We report a Top-1 accuracy of 63.79% and a Top-10 accuracy of 83.95% compared to the current performance of state-of-the-art models of 53.56% and 80.36%, respectively. Our findings not only set a new performance benchmark but also strengthen confidence in the promising future of AI-driven IR spectroscopy as a practical and powerful tool for structure elucidation. To facilitate broad adoption among chemical laboratories and domain experts, we openly share our models and code.