DYNAMIC PREDICTION WITH MULTIVARIATE LONGITUDINAL OUTCOMES AND LONGITUDINAL MAGNETIC RESONANCE IMAGING DATA.

IF 1.3 4区 数学 Q2 STATISTICS & PROBABILITY
Annals of Applied Statistics Pub Date : 2025-03-01 Epub Date: 2025-03-17 DOI:10.1214/24-aoas1970
Haotian Zou, Luo Xiao, Donglin Zeng, Sheng Luo
{"title":"DYNAMIC PREDICTION WITH MULTIVARIATE LONGITUDINAL OUTCOMES AND LONGITUDINAL MAGNETIC RESONANCE IMAGING DATA.","authors":"Haotian Zou, Luo Xiao, Donglin Zeng, Sheng Luo","doi":"10.1214/24-aoas1970","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's Disease (AD) is a common neurodegenerative disorder impairing multiple domains. Recent AD studies, for example, the Alzheimer's Disease Neuroimaging Initiative (ADNI) study, collect multimodal data to better understand AD severity and progression. To facilitate precision medicine for high-risk individuals, it is essential to develop an AD predictive model that leverages multimodal data and provides accurate personalized predictions of dementia occurrences. In this article we propose a multivariate functional mixed model with longitudinal magnetic resonance imaging data (MFMM-LMRI) that jointly models longitudinal neurological scores, longitudinal voxelwise MRI data, and the survival outcome as dementia onset. We model longitudinal MRI data using the joint and individual variation explained (JIVE) approach. We investigate two functional forms linking the longitudinal and survival processes. We adopt the Markov chain Monte Carlo (MCMC) method to obtain posterior samples. We establish a dynamic prediction framework that predicts longitudinal trajectories and the probability of dementia occurrence. The simulation study with various sample sizes and event rates supports the validity of the method. We apply the MFMM-LMRI to the motivating ADNI study and conclude that additional ApoE-<i>ϵ</i>4 alleles and a higher latent disease profile are associated with a higher risk of dementia onset. We detect a significant association between the longitudinal MRI data and the survival outcome. The instantaneous model with longitudinal MRI data has the best fitting and predictive performance.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"19 1","pages":"505-528"},"PeriodicalIF":1.3000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12206078/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/24-aoas1970","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer's Disease (AD) is a common neurodegenerative disorder impairing multiple domains. Recent AD studies, for example, the Alzheimer's Disease Neuroimaging Initiative (ADNI) study, collect multimodal data to better understand AD severity and progression. To facilitate precision medicine for high-risk individuals, it is essential to develop an AD predictive model that leverages multimodal data and provides accurate personalized predictions of dementia occurrences. In this article we propose a multivariate functional mixed model with longitudinal magnetic resonance imaging data (MFMM-LMRI) that jointly models longitudinal neurological scores, longitudinal voxelwise MRI data, and the survival outcome as dementia onset. We model longitudinal MRI data using the joint and individual variation explained (JIVE) approach. We investigate two functional forms linking the longitudinal and survival processes. We adopt the Markov chain Monte Carlo (MCMC) method to obtain posterior samples. We establish a dynamic prediction framework that predicts longitudinal trajectories and the probability of dementia occurrence. The simulation study with various sample sizes and event rates supports the validity of the method. We apply the MFMM-LMRI to the motivating ADNI study and conclude that additional ApoE-ϵ4 alleles and a higher latent disease profile are associated with a higher risk of dementia onset. We detect a significant association between the longitudinal MRI data and the survival outcome. The instantaneous model with longitudinal MRI data has the best fitting and predictive performance.

动态预测与多元纵向结果和纵向磁共振成像数据。
阿尔茨海默病(AD)是一种常见的神经退行性疾病。最近的阿尔茨海默病研究,例如,阿尔茨海默病神经影像学倡议(ADNI)研究,收集多模式数据,以更好地了解阿尔茨海默病的严重程度和进展。为了促进对高危人群的精准医疗,开发一种利用多模态数据的阿尔茨海默病预测模型并提供对痴呆症发生的准确个性化预测至关重要。在本文中,我们提出了一个具有纵向磁共振成像数据(MFMM-LMRI)的多元功能混合模型,该模型联合模拟纵向神经学评分、纵向体向MRI数据和痴呆发病时的生存结果。我们使用关节和个体变异解释(JIVE)方法对纵向MRI数据进行建模。我们研究了两种连接纵向和生存过程的功能形式。我们采用马尔科夫链蒙特卡罗(MCMC)方法获得后验样本。我们建立了一个动态预测框架,预测纵向轨迹和痴呆发生的概率。不同样本量和事件率的仿真研究证明了该方法的有效性。我们将MFMM-LMRI应用于ADNI研究,并得出结论,额外的ApoE-ϵ4等位基因和更高的潜伏性疾病特征与更高的痴呆发病风险相关。我们发现纵向MRI数据与生存结果之间存在显著关联。纵向MRI数据的瞬时模型具有最佳的拟合和预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Applied Statistics
Annals of Applied Statistics 社会科学-统计学与概率论
CiteScore
3.10
自引率
5.60%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Statistical research spans an enormous range from direct subject-matter collaborations to pure mathematical theory. The Annals of Applied Statistics, the newest journal from the IMS, is aimed at papers in the applied half of this range. Published quarterly in both print and electronic form, our goal is to provide a timely and unified forum for all areas of applied statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信