Advances in programmable DNA nanostructures enabling stimuli-responsive drug delivery and multimodal biosensing

IF 3.1 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yao Hong, Wenyue Ma, Meixia Wang and Hong-Hui Wang
{"title":"Advances in programmable DNA nanostructures enabling stimuli-responsive drug delivery and multimodal biosensing","authors":"Yao Hong, Wenyue Ma, Meixia Wang and Hong-Hui Wang","doi":"10.1039/D5CB00057B","DOIUrl":null,"url":null,"abstract":"<p >Recent advancements in DNA nanotechnology have unlocked unprecedented opportunities to address critical challenges in precision medicine, particularly in targeted drug delivery and biomedical imaging. Conventional nanocarriers often suffer from poor spatiotemporal control, suboptimal tumor accumulation, and non-specific biodistribution. To overcome these limitations, DNA-engineered nanostructures—including tile-based assemblies, origami frameworks, spherical nucleic acids, and stimuli-responsive hydrogels—have emerged as programmable platforms capable of dynamically responding to tumor microenvironmental cues (<em>e.g.</em>, pH, enzymatic activity, redox gradients) for triggered drug release. In this review, we comprehensively analyze these architectures with emphasis on their modular design strategies, <em>in vivo</em> stability improvements <em>via</em> polyethylene glycol (PEG) functionalization, and multi-ligand targeting capabilities against cancer-specific biomarkers. In addition to therapeutic uses, these nanostructures also enable highly sensitive detection of circulating tumor DNA and exosomes using fluorescence resonance energy transfer (FRET) probes, electrochemiluminescence amplification circuits, SERS substrates, and cell variable region sensing technology. They also allow for real-time monitoring of dynamic intercellular interactions, overcoming the constraints of traditional sensing methods. This review systematically elaborates on the structural characteristics of DNA assemblies and summarizes the innovative applications of these nanostructures in multimodal detection, offering a more comprehensive perspective for early cancer diagnosis and precision treatment. Despite promising preclinical results, key translational challenges persist, including scalable manufacturing bottlenecks, immune compatibility optimization, and rigorous assessment of long-term nanotoxicity. Future integration with artificial intelligence-driven design tools may catalyze the development of next-generation theranostic nanodevices, ultimately bridging the gap between synthetic biology and clinical oncology.</p>","PeriodicalId":40691,"journal":{"name":"RSC Chemical Biology","volume":" 9","pages":" 1366-1385"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12203123/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Chemical Biology","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/cb/d5cb00057b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advancements in DNA nanotechnology have unlocked unprecedented opportunities to address critical challenges in precision medicine, particularly in targeted drug delivery and biomedical imaging. Conventional nanocarriers often suffer from poor spatiotemporal control, suboptimal tumor accumulation, and non-specific biodistribution. To overcome these limitations, DNA-engineered nanostructures—including tile-based assemblies, origami frameworks, spherical nucleic acids, and stimuli-responsive hydrogels—have emerged as programmable platforms capable of dynamically responding to tumor microenvironmental cues (e.g., pH, enzymatic activity, redox gradients) for triggered drug release. In this review, we comprehensively analyze these architectures with emphasis on their modular design strategies, in vivo stability improvements via polyethylene glycol (PEG) functionalization, and multi-ligand targeting capabilities against cancer-specific biomarkers. In addition to therapeutic uses, these nanostructures also enable highly sensitive detection of circulating tumor DNA and exosomes using fluorescence resonance energy transfer (FRET) probes, electrochemiluminescence amplification circuits, SERS substrates, and cell variable region sensing technology. They also allow for real-time monitoring of dynamic intercellular interactions, overcoming the constraints of traditional sensing methods. This review systematically elaborates on the structural characteristics of DNA assemblies and summarizes the innovative applications of these nanostructures in multimodal detection, offering a more comprehensive perspective for early cancer diagnosis and precision treatment. Despite promising preclinical results, key translational challenges persist, including scalable manufacturing bottlenecks, immune compatibility optimization, and rigorous assessment of long-term nanotoxicity. Future integration with artificial intelligence-driven design tools may catalyze the development of next-generation theranostic nanodevices, ultimately bridging the gap between synthetic biology and clinical oncology.

Abstract Image

可编程DNA纳米结构的进展使刺激反应性药物传递和多模态生物传感成为可能。
DNA纳米技术的最新进展为解决精准医学,特别是靶向给药和生物医学成像领域的关键挑战提供了前所未有的机会。传统的纳米载体往往存在时空控制不佳、肿瘤积聚不理想和非特异性生物分布等问题。为了克服这些限制,dna工程纳米结构——包括基于瓦片的组件、折纸框架、球形核酸和刺激响应水凝胶——已经成为可编程平台,能够动态响应肿瘤微环境线索(例如,pH值、酶活性、氧化还原梯度),从而触发药物释放。在这篇综述中,我们全面分析了这些结构,重点是它们的模块化设计策略,通过聚乙二醇(PEG)功能化提高体内稳定性,以及针对癌症特异性生物标志物的多配体靶向能力。除了治疗用途外,这些纳米结构还可以使用荧光共振能量转移(FRET)探针、电化学发光放大电路、SERS底物和细胞可变区传感技术对循环肿瘤DNA和外泌体进行高灵敏度检测。它们还允许实时监测动态细胞间相互作用,克服传统传感方法的限制。本文系统阐述了DNA组装体的结构特征,并总结了这些纳米结构在多模态检测中的创新应用,为癌症的早期诊断和精准治疗提供了更全面的视角。尽管临床前研究结果很有希望,但关键的转化挑战仍然存在,包括可扩展的制造瓶颈、免疫相容性优化和长期纳米毒性的严格评估。未来与人工智能驱动的设计工具的整合可能会促进下一代治疗纳米器件的发展,最终弥合合成生物学和临床肿瘤学之间的差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.10
自引率
0.00%
发文量
128
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信