Domain Adaptation-enhanced searchlight: enabling classification of brain states from visual perception to mental imagery.

Q1 Computer Science
Alexander Olza, David Soto, Roberto Santana
{"title":"Domain Adaptation-enhanced searchlight: enabling classification of brain states from visual perception to mental imagery.","authors":"Alexander Olza, David Soto, Roberto Santana","doi":"10.1186/s40708-025-00263-0","DOIUrl":null,"url":null,"abstract":"<p><p>In cognitive neuroscience and brain-computer interface research, accurately predicting imagined stimuli is crucial. This study investigates the effectiveness of Domain Adaptation (DA) in enhancing imagery prediction using primarily visual data from fMRI scans of 18 subjects. Initially, we train a baseline model on visual stimuli to predict imagined stimuli, utilizing data from 14 brain regions. We then develop several models to improve imagery prediction, comparing different DA methods. Our results demonstrate that DA significantly enhances imagery prediction in binary classification on our dataset, as well as in multiclass classification on a publicly available dataset. We then conduct a DA-enhanced searchlight analysis, followed by permutation-based statistical tests to identify brain regions where imagery decoding is consistently above chance across subjects. Our DA-enhanced searchlight predicts imagery contents in a highly distributed set of brain regions, including the visual cortex and the frontoparietal cortex, thereby outperforming standard cross-domain classification methods. The complete code and data for this paper have been made openly available for the use of the scientific community.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"12 1","pages":"17"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12206218/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40708-025-00263-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

In cognitive neuroscience and brain-computer interface research, accurately predicting imagined stimuli is crucial. This study investigates the effectiveness of Domain Adaptation (DA) in enhancing imagery prediction using primarily visual data from fMRI scans of 18 subjects. Initially, we train a baseline model on visual stimuli to predict imagined stimuli, utilizing data from 14 brain regions. We then develop several models to improve imagery prediction, comparing different DA methods. Our results demonstrate that DA significantly enhances imagery prediction in binary classification on our dataset, as well as in multiclass classification on a publicly available dataset. We then conduct a DA-enhanced searchlight analysis, followed by permutation-based statistical tests to identify brain regions where imagery decoding is consistently above chance across subjects. Our DA-enhanced searchlight predicts imagery contents in a highly distributed set of brain regions, including the visual cortex and the frontoparietal cortex, thereby outperforming standard cross-domain classification methods. The complete code and data for this paper have been made openly available for the use of the scientific community.

领域适应增强探照灯:从视觉感知到心理意象的大脑状态分类。
在认知神经科学和脑机接口研究中,准确预测想象的刺激是至关重要的。本研究主要利用18名受试者的功能磁共振成像扫描的视觉数据,研究了域适应(DA)在增强图像预测方面的有效性。首先,我们利用来自14个大脑区域的数据,在视觉刺激上训练一个基线模型来预测想象的刺激。然后,我们开发了几个模型来改进图像预测,比较不同的数据处理方法。我们的研究结果表明,DA在我们的数据集上显著增强了图像预测的二分类,以及在公开可用的数据集上的多类分类。然后,我们进行了da增强的探照灯分析,随后进行了基于排列的统计测试,以确定图像解码在受试者中始终高于概率的大脑区域。我们的da增强探照灯预测高度分布的大脑区域的图像内容,包括视觉皮层和额顶叶皮层,从而优于标准的跨域分类方法。这篇论文的完整代码和数据已经公开供科学界使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Brain Informatics
Brain Informatics Computer Science-Computer Science Applications
CiteScore
9.50
自引率
0.00%
发文量
27
审稿时长
13 weeks
期刊介绍: Brain Informatics is an international, peer-reviewed, interdisciplinary open-access journal published under the brand SpringerOpen, which provides a unique platform for researchers and practitioners to disseminate original research on computational and informatics technologies related to brain. This journal addresses the computational, cognitive, physiological, biological, physical, ecological and social perspectives of brain informatics. It also welcomes emerging information technologies and advanced neuro-imaging technologies, such as big data analytics and interactive knowledge discovery related to various large-scale brain studies and their applications. This journal will publish high-quality original research papers, brief reports and critical reviews in all theoretical, technological, clinical and interdisciplinary studies that make up the field of brain informatics and its applications in brain-machine intelligence, brain-inspired intelligent systems, mental health and brain disorders, etc. The scope of papers includes the following five tracks: Track 1: Cognitive and Computational Foundations of Brain Science Track 2: Human Information Processing Systems Track 3: Brain Big Data Analytics, Curation and Management Track 4: Informatics Paradigms for Brain and Mental Health Research Track 5: Brain-Machine Intelligence and Brain-Inspired Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信