Lun Xin, Zhe Zhang, Kushan Shah, Venus Hashemi, Xuanyue Li, Grace Qin, Steven Ren, Wei Chen, Yunsong Li
{"title":"Matching placebo development for injectable biologics-a practical tutorial.","authors":"Lun Xin, Zhe Zhang, Kushan Shah, Venus Hashemi, Xuanyue Li, Grace Qin, Steven Ren, Wei Chen, Yunsong Li","doi":"10.1093/abt/tbaf009","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In drug development, placebo-controlled trials are vital for assessing treatment efficacy. Developing a suitable placebo for injectable biologics presents unique challenges, particularly in matching the physical characteristics of the active drug without containing its active pharmaceutical ingredient.</p><p><strong>Methods: </strong>Our study developed a methodology for biologic placebo formulations, focusing on color and viscosity matching, in relevant chemical matrixes. A custom color deconvolution algorithm was used for precise color-matching, and sodium carboxymethyl cellulose (Na-CMC) was employed to adjust viscosity in different buffer systems. The interactions between buffers, color agents, and excipients were investigated to ensure consistency in physical properties. Stability testing was conducted under freeze/thaw and thermal stress conditions.</p><p><strong>Results: </strong>The color-matching algorithm successfully achieved visually indistinguishable results from the active drug, measured by an empirical parameter for color differences (ΔE values). Na-CMC was effective in matching the viscosity of biologic formulations, maintaining the desired physical appearance. Significant interactions between color agents and buffer systems influenced viscosity and osmolality. Stability tests confirmed that the placebo formulations retained their color, pH, and osmolality, with only minor viscosity changes after stress testing.</p><p><strong>Conclusions: </strong>Our study presents a systematic approach to biologic placebo development, providing a reliable framework for matching the color and viscosity of biologics. The methods and findings support the use of tailored excipients and color-matching algorithms to ensure clinical blinding in trials, enhancing the rigor of drug efficacy assessments and contributing to future placebo design in biologic drug development.</p>","PeriodicalId":36655,"journal":{"name":"Antibody Therapeutics","volume":"8 3","pages":"177-188"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12202036/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antibody Therapeutics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/abt/tbaf009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Background: In drug development, placebo-controlled trials are vital for assessing treatment efficacy. Developing a suitable placebo for injectable biologics presents unique challenges, particularly in matching the physical characteristics of the active drug without containing its active pharmaceutical ingredient.
Methods: Our study developed a methodology for biologic placebo formulations, focusing on color and viscosity matching, in relevant chemical matrixes. A custom color deconvolution algorithm was used for precise color-matching, and sodium carboxymethyl cellulose (Na-CMC) was employed to adjust viscosity in different buffer systems. The interactions between buffers, color agents, and excipients were investigated to ensure consistency in physical properties. Stability testing was conducted under freeze/thaw and thermal stress conditions.
Results: The color-matching algorithm successfully achieved visually indistinguishable results from the active drug, measured by an empirical parameter for color differences (ΔE values). Na-CMC was effective in matching the viscosity of biologic formulations, maintaining the desired physical appearance. Significant interactions between color agents and buffer systems influenced viscosity and osmolality. Stability tests confirmed that the placebo formulations retained their color, pH, and osmolality, with only minor viscosity changes after stress testing.
Conclusions: Our study presents a systematic approach to biologic placebo development, providing a reliable framework for matching the color and viscosity of biologics. The methods and findings support the use of tailored excipients and color-matching algorithms to ensure clinical blinding in trials, enhancing the rigor of drug efficacy assessments and contributing to future placebo design in biologic drug development.