Luigi Grasso, Bradford J Kline, Nicholas C Nicolaides
{"title":"Bypassing the immunosuppressive effects of CA125/MUC16 via re-engineered rituximab (NAV-006) to improve its antitumor activity <i>in vivo</i>.","authors":"Luigi Grasso, Bradford J Kline, Nicholas C Nicolaides","doi":"10.1093/abt/tbaf008","DOIUrl":null,"url":null,"abstract":"<p><p>The monoclonal antibody rituximab functions through complement-dependent cytotoxicity (CDC) and antibody-dependent cellular cytotoxicity (ADCC) and is used to treat non-Hodgkin's lymphoma. Elevated serum CA125/MUC16 levels, present in some follicular lymphoma patients, have been shown to correlate with reduced efficacy of rituximab. Previous studies revealed that CA125/MUC16 binds to rituximab, diminishing its CDC and ADCC. A rituximab variant, NAV-006, was engineered to counteract CA125/MUC16's immunosuppressive effects. NAV-006 demonstrated enhanced CDC and ADCC activities and was unaffected by CA125/MUC16. In the present study, NAV-006 showed improved <i>in vivo</i> antitumor activity compared to rituximab in a human lymphoma model with reconstituted CA125/MUC16. Additionally, CA125/MUC16 bound to newer antibody-based lymphoma treatment agents, including obinutuzumab and tafasitamab, suppressing their immune effector functions. Bispecific antibodies mosunetuzumab and glofitamab also exhibited reduced cytotoxicity in the presence of CA125/MUC16. These findings suggest that NAV-006 could improve therapeutic efficacy in B-cell lymphomas, particularly in patients with elevated CA125/MUC16 levels.</p>","PeriodicalId":36655,"journal":{"name":"Antibody Therapeutics","volume":"8 3","pages":"171-176"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12199351/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antibody Therapeutics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/abt/tbaf008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
The monoclonal antibody rituximab functions through complement-dependent cytotoxicity (CDC) and antibody-dependent cellular cytotoxicity (ADCC) and is used to treat non-Hodgkin's lymphoma. Elevated serum CA125/MUC16 levels, present in some follicular lymphoma patients, have been shown to correlate with reduced efficacy of rituximab. Previous studies revealed that CA125/MUC16 binds to rituximab, diminishing its CDC and ADCC. A rituximab variant, NAV-006, was engineered to counteract CA125/MUC16's immunosuppressive effects. NAV-006 demonstrated enhanced CDC and ADCC activities and was unaffected by CA125/MUC16. In the present study, NAV-006 showed improved in vivo antitumor activity compared to rituximab in a human lymphoma model with reconstituted CA125/MUC16. Additionally, CA125/MUC16 bound to newer antibody-based lymphoma treatment agents, including obinutuzumab and tafasitamab, suppressing their immune effector functions. Bispecific antibodies mosunetuzumab and glofitamab also exhibited reduced cytotoxicity in the presence of CA125/MUC16. These findings suggest that NAV-006 could improve therapeutic efficacy in B-cell lymphomas, particularly in patients with elevated CA125/MUC16 levels.