{"title":"A novel bispecific antibody CVL006 superior to AK112 for dual targeting of PD-L1 and VEGF in cancer therapy.","authors":"Chunyan Wang, Hao Huang, Zeng Song, Zhongyuan Li, Jinwen Huang, Liang Cao, Ziai Wu, Junfang Pan, XiaoBing Chen, Xiaokun Shen","doi":"10.1093/abt/tbaf012","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Preclinical and clinical studies highlight the enhanced anticancer efficacy of combining anti-VEGF/VEGFR drugs with immune checkpoint inhibitors (ICIs). PD-L1/VEGF bispecific antibodies outperform monotherapy or combined PD-L1 inhibitors and anti-VEGF antibodies by simultaneously blocking the PD-1/PD-L1 immune pathway and VEGF-driven angiogenesis, providing a dual mechanism for superior antitumor activity.</p><p><strong>Methods: </strong>We developed CVL006, a novel bispecific antibody, by fusing an anti-PD-L1 VHH domain with a humanized IgG1 anti-VEGF monoclonal antibody. CVL006 retains antibody-dependent cellular cytotoxicity (ADCC) functionality. Preclinical evaluations included binding affinity and specificity assessments, dual-pathway blockade testing, and <i>in vivo</i> efficacy comparisons to atezolizumab and PD-1/VEGF bispecific antibody AK112 (ivonescimab).</p><p><strong>Results: </strong>CVL006 demonstrated high affinity and specificity for human PD-L1 and VEGF. It effectively inhibited VEGF/VEGFR signaling and the PD-L1/PD-1 axis, suppressing VEGF-induced angiogenesis and reactivating T cells. This reactivation led to increased cytokine secretion critical for immune response. <i>In vivo</i> studies revealed CVL006's superior antitumor efficacy, achieving greater tumor growth inhibition and angiogenesis suppression than atezolizumab. CVL006 also outperformed AK112 in preclinical models, showcasing robust antitumor activity.</p><p><strong>Conclusions: </strong>CVL006 integrates immune checkpoint inhibition and tumor vascularization disruption, offering a comprehensive anticancer strategy. Its superior preclinical performance compared to atezolizumab and AK112 underscores its therapeutic potential, paving the way for further development and clinical translation.</p>","PeriodicalId":36655,"journal":{"name":"Antibody Therapeutics","volume":"8 3","pages":"189-196"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12202206/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antibody Therapeutics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/abt/tbaf012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Preclinical and clinical studies highlight the enhanced anticancer efficacy of combining anti-VEGF/VEGFR drugs with immune checkpoint inhibitors (ICIs). PD-L1/VEGF bispecific antibodies outperform monotherapy or combined PD-L1 inhibitors and anti-VEGF antibodies by simultaneously blocking the PD-1/PD-L1 immune pathway and VEGF-driven angiogenesis, providing a dual mechanism for superior antitumor activity.
Methods: We developed CVL006, a novel bispecific antibody, by fusing an anti-PD-L1 VHH domain with a humanized IgG1 anti-VEGF monoclonal antibody. CVL006 retains antibody-dependent cellular cytotoxicity (ADCC) functionality. Preclinical evaluations included binding affinity and specificity assessments, dual-pathway blockade testing, and in vivo efficacy comparisons to atezolizumab and PD-1/VEGF bispecific antibody AK112 (ivonescimab).
Results: CVL006 demonstrated high affinity and specificity for human PD-L1 and VEGF. It effectively inhibited VEGF/VEGFR signaling and the PD-L1/PD-1 axis, suppressing VEGF-induced angiogenesis and reactivating T cells. This reactivation led to increased cytokine secretion critical for immune response. In vivo studies revealed CVL006's superior antitumor efficacy, achieving greater tumor growth inhibition and angiogenesis suppression than atezolizumab. CVL006 also outperformed AK112 in preclinical models, showcasing robust antitumor activity.
Conclusions: CVL006 integrates immune checkpoint inhibition and tumor vascularization disruption, offering a comprehensive anticancer strategy. Its superior preclinical performance compared to atezolizumab and AK112 underscores its therapeutic potential, paving the way for further development and clinical translation.