Single-cell transcriptomics of vascularized human brain organoids decipher lineage-specific stress adaptation in fetal hypoxia-reoxygenation injury.

IF 12.4 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Theranostics Pub Date : 2025-06-09 eCollection Date: 2025-01-01 DOI:10.7150/thno.117001
Simeng Yi, Min Huang, Chunmei Xian, Xi Kong, Shigang Yin, Jianhua Peng, Yong Zhang, Xiuju Du, Yong Jiang, Bingqing Xie, Huangfan Xie
{"title":"Single-cell transcriptomics of vascularized human brain organoids decipher lineage-specific stress adaptation in fetal hypoxia-reoxygenation injury.","authors":"Simeng Yi, Min Huang, Chunmei Xian, Xi Kong, Shigang Yin, Jianhua Peng, Yong Zhang, Xiuju Du, Yong Jiang, Bingqing Xie, Huangfan Xie","doi":"10.7150/thno.117001","DOIUrl":null,"url":null,"abstract":"<p><p><b>Rationale:</b> Fetal hypoxia, a major contributor to neonatal mortality, induces complex neurovascular disruptions in developing brains, yet human-specific cellular mechanisms remain poorly understood due to limitations in existing models. This study establishes an advanced vascularized human cortical organoid (vhCO) model to decode cell type-specific injury mechanisms and therapeutic targets during hypoxia-reoxygenation. <b>Methods:</b> We developed vhCOs by integrating cortical and vascular organoids, recapitulating mid-to-late gestational neurodevelopment with diverse lineages-neural progenitors, neurons, microglia, and functional vasculature with blood-brain barrier properties. Hypoxia-reoxygenation experiments were conducted on vhCOs, followed by single-cell transcriptomic profiling to dissect cellular responses. <b>Results:</b> Key findings include: (1) Lineage-specific vulnerabilities: astrocyte precursors exhibited developmental arrest, while immature GABAergic neurons (Subtype I) underwent neurogenic collapse. Microglia displayed a biphasic inflammatory response-initially suppressed, then hyperactivated post-reoxygenation, diverging from animal models; (2) Hypoxia memory persisted in non-neural cells (pericytes, fibroblasts), driving compartment-specific vascular remodeling via Notch signaling and collagen deposition; (3) Rewired neural-non-neural crosstalk networks (e.g., IGF2-IGF2R, LGALS3-MERTK, Wnts-SFRP2) revealed novel repair targets inaccessible to conventional models. <b>Conclusions:</b> By prioritizing single-cell resolution, this study delineates human-specific neurovascular pathophysiology and stress adaptation networks in hypoxic brain injury. The vhCO platform bridges translational gaps, offering a paradigm for precision therapeutics and advancing research on developmental brain disorders.</p>","PeriodicalId":22932,"journal":{"name":"Theranostics","volume":"15 14","pages":"7001-7024"},"PeriodicalIF":12.4000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12203816/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theranostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.7150/thno.117001","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Rationale: Fetal hypoxia, a major contributor to neonatal mortality, induces complex neurovascular disruptions in developing brains, yet human-specific cellular mechanisms remain poorly understood due to limitations in existing models. This study establishes an advanced vascularized human cortical organoid (vhCO) model to decode cell type-specific injury mechanisms and therapeutic targets during hypoxia-reoxygenation. Methods: We developed vhCOs by integrating cortical and vascular organoids, recapitulating mid-to-late gestational neurodevelopment with diverse lineages-neural progenitors, neurons, microglia, and functional vasculature with blood-brain barrier properties. Hypoxia-reoxygenation experiments were conducted on vhCOs, followed by single-cell transcriptomic profiling to dissect cellular responses. Results: Key findings include: (1) Lineage-specific vulnerabilities: astrocyte precursors exhibited developmental arrest, while immature GABAergic neurons (Subtype I) underwent neurogenic collapse. Microglia displayed a biphasic inflammatory response-initially suppressed, then hyperactivated post-reoxygenation, diverging from animal models; (2) Hypoxia memory persisted in non-neural cells (pericytes, fibroblasts), driving compartment-specific vascular remodeling via Notch signaling and collagen deposition; (3) Rewired neural-non-neural crosstalk networks (e.g., IGF2-IGF2R, LGALS3-MERTK, Wnts-SFRP2) revealed novel repair targets inaccessible to conventional models. Conclusions: By prioritizing single-cell resolution, this study delineates human-specific neurovascular pathophysiology and stress adaptation networks in hypoxic brain injury. The vhCO platform bridges translational gaps, offering a paradigm for precision therapeutics and advancing research on developmental brain disorders.

血管化人脑类器官的单细胞转录组学揭示了胎儿缺氧-再氧损伤中谱系特异性应激适应。
理由:胎儿缺氧是新生儿死亡的主要原因,在发育中的大脑中引起复杂的神经血管破坏,但由于现有模型的局限性,人类特异性细胞机制仍然知之甚少。本研究建立了一个先进的血管化人类皮质类器官(vhCO)模型,以解码低氧再氧化过程中细胞类型特异性损伤机制和治疗靶点。方法:我们通过整合皮质和血管类器官来开发vhCOs,重现了妊娠中晚期不同谱系的神经发育——神经祖细胞、神经元、小胶质细胞和具有血脑屏障特性的功能性血管。对vhCOs进行了缺氧再氧化实验,随后进行了单细胞转录组学分析,以解剖细胞反应。结果:主要发现包括:(1)谱系特异性脆弱性:星形胶质细胞前体发育停滞,未成熟gaba能神经元(亚型I)发生神经源性塌陷。与动物模型不同,小胶质细胞表现出两期炎症反应——最初被抑制,再氧化后过度激活;(2)低氧记忆在非神经细胞(周细胞、成纤维细胞)中持续存在,通过Notch信号和胶原沉积驱动室特异性血管重构;(3)重新连接的神经-非神经串扰网络(如IGF2-IGF2R, LGALS3-MERTK, wnt - sfrp2)揭示了传统模型无法实现的新修复靶点。结论:通过优先考虑单细胞分辨率,本研究描绘了缺氧脑损伤中人类特异性神经血管病理生理和应激适应网络。vhCO平台弥合了翻译方面的差距,为精确治疗提供了一个范例,并推进了对发育性脑疾病的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theranostics
Theranostics MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
25.40
自引率
1.60%
发文量
433
审稿时长
1 months
期刊介绍: Theranostics serves as a pivotal platform for the exchange of clinical and scientific insights within the diagnostic and therapeutic molecular and nanomedicine community, along with allied professions engaged in integrating molecular imaging and therapy. As a multidisciplinary journal, Theranostics showcases innovative research articles spanning fields such as in vitro diagnostics and prognostics, in vivo molecular imaging, molecular therapeutics, image-guided therapy, biosensor technology, nanobiosensors, bioelectronics, system biology, translational medicine, point-of-care applications, and personalized medicine. Encouraging a broad spectrum of biomedical research with potential theranostic applications, the journal rigorously peer-reviews primary research, alongside publishing reviews, news, and commentary that aim to bridge the gap between the laboratory, clinic, and biotechnology industries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信