{"title":"Resource allocation to cell envelopes and the scaling of bacterial growth rate.","authors":"Bogi Trickovic, Michael Lynch","doi":"10.1088/1478-3975/adea04","DOIUrl":null,"url":null,"abstract":"<p><p>Although various empirical studies have reported a positive correlation between the specific growth rate and cell size across bacteria, it is currently unclear what causes this relationship. We conjecture that such scaling occurs because smaller cells have a larger surface-to-volume ratio and thus have to allocate a greater fraction of the total resources to the production of the cell envelope, leaving fewer resources for other biosynthetic processes. To test this theory, we developed a coarse-grained model of bacterial physiology composed of the proteome that converts nutrients into biomass, with the cell envelope acting as a resource sink. Assuming resources are partitioned to maximize the growth rate, the model predicts that the growth rate and ribosomal mass fraction scale negatively, while the mass fraction of envelope-producing enzymes scales positively with surface-to-volume. These relationships are compatible with growth measurements and quantitative proteomics data reported in the literature.</p>","PeriodicalId":20207,"journal":{"name":"Physical biology","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1088/1478-3975/adea04","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Although various empirical studies have reported a positive correlation between the specific growth rate and cell size across bacteria, it is currently unclear what causes this relationship. We conjecture that such scaling occurs because smaller cells have a larger surface-to-volume ratio and thus have to allocate a greater fraction of the total resources to the production of the cell envelope, leaving fewer resources for other biosynthetic processes. To test this theory, we developed a coarse-grained model of bacterial physiology composed of the proteome that converts nutrients into biomass, with the cell envelope acting as a resource sink. Assuming resources are partitioned to maximize the growth rate, the model predicts that the growth rate and ribosomal mass fraction scale negatively, while the mass fraction of envelope-producing enzymes scales positively with surface-to-volume. These relationships are compatible with growth measurements and quantitative proteomics data reported in the literature.
期刊介绍:
Physical Biology publishes articles in the broad interdisciplinary field bridging biology with the physical sciences and engineering. This journal focuses on research in which quantitative approaches – experimental, theoretical and modeling – lead to new insights into biological systems at all scales of space and time, and all levels of organizational complexity.
Physical Biology accepts contributions from a wide range of biological sub-fields, including topics such as:
molecular biophysics, including single molecule studies, protein-protein and protein-DNA interactions
subcellular structures, organelle dynamics, membranes, protein assemblies, chromosome structure
intracellular processes, e.g. cytoskeleton dynamics, cellular transport, cell division
systems biology, e.g. signaling, gene regulation and metabolic networks
cells and their microenvironment, e.g. cell mechanics and motility, chemotaxis, extracellular matrix, biofilms
cell-material interactions, e.g. biointerfaces, electrical stimulation and sensing, endocytosis
cell-cell interactions, cell aggregates, organoids, tissues and organs
developmental dynamics, including pattern formation and morphogenesis
physical and evolutionary aspects of disease, e.g. cancer progression, amyloid formation
neuronal systems, including information processing by networks, memory and learning
population dynamics, ecology, and evolution
collective action and emergence of collective phenomena.