Ai Chen, Zhihai Chen, Bangbang Huang, Guili Lian, Li Luo, Liangdi Xie
{"title":"Hypoxia-induced histone lactylation promotes pulmonary arterial smooth muscle cells proliferation in pulmonary hypertension.","authors":"Ai Chen, Zhihai Chen, Bangbang Huang, Guili Lian, Li Luo, Liangdi Xie","doi":"10.1007/s11010-025-05342-8","DOIUrl":null,"url":null,"abstract":"<p><p>Pulmonary hypertension (PH) is characterized by pulmonary vascular remodeling and excessive proliferation of pulmonary artery smooth muscle cells (PASMCs). Glycolysis plays a crucial role in PH pathogenesis, but the epigenetic mechanisms linking glycolysis to PASMCs proliferation remain unclear. Histone lactylation, a novel post-translational modification derived from glycolytic lactate, may regulate PASMCs proliferation. Primary rat PASMCs were cultured under hypoxia and treated with sodium L-lactate (NaLa) to assess glycolytic activity and histone lactylation. RNA sequencing, RT-qPCR, and Western blotting identified differentially expressed genes (DEGs), while ChIP-qPCR evaluated histone lactylation enrichment at gene promoters. In vivo, a hypoxia-induced PH rat model was used to examine the effect of glycolysis inhibition using oxamate. Mendelian randomization (MR) analysis assessed the causal relationship between placental growth factor (PGF) and PH. Hypoxia and NaLa treatment significantly increased glycolytic activity, lactate production, and histone lactylation, promoting PASMCs proliferation. Transcriptomic analysis identified 157 DEGs, with five key genes (Gbe1, Pgf, Mt2A, Ythdf2 and Gys1) upregulated in response to histone lactylation. ChIP-qPCR confirmed H3K18la enrichment at their promoters. Glycolysis inhibition with oxamate effectively reduced histone lactylation, PASMCs proliferation, and vascular remodeling in hypoxic PH rats. MR analysis identified PGF as a causal factor contributing to PH risk, suggesting a potential therapeutic target. This study reveals that glycolysis-induced histone lactylation drives PASMCs proliferation and vascular remodeling in PH. Targeting lactate metabolism and histone lactylation may provide a novel therapeutic approach.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-025-05342-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pulmonary hypertension (PH) is characterized by pulmonary vascular remodeling and excessive proliferation of pulmonary artery smooth muscle cells (PASMCs). Glycolysis plays a crucial role in PH pathogenesis, but the epigenetic mechanisms linking glycolysis to PASMCs proliferation remain unclear. Histone lactylation, a novel post-translational modification derived from glycolytic lactate, may regulate PASMCs proliferation. Primary rat PASMCs were cultured under hypoxia and treated with sodium L-lactate (NaLa) to assess glycolytic activity and histone lactylation. RNA sequencing, RT-qPCR, and Western blotting identified differentially expressed genes (DEGs), while ChIP-qPCR evaluated histone lactylation enrichment at gene promoters. In vivo, a hypoxia-induced PH rat model was used to examine the effect of glycolysis inhibition using oxamate. Mendelian randomization (MR) analysis assessed the causal relationship between placental growth factor (PGF) and PH. Hypoxia and NaLa treatment significantly increased glycolytic activity, lactate production, and histone lactylation, promoting PASMCs proliferation. Transcriptomic analysis identified 157 DEGs, with five key genes (Gbe1, Pgf, Mt2A, Ythdf2 and Gys1) upregulated in response to histone lactylation. ChIP-qPCR confirmed H3K18la enrichment at their promoters. Glycolysis inhibition with oxamate effectively reduced histone lactylation, PASMCs proliferation, and vascular remodeling in hypoxic PH rats. MR analysis identified PGF as a causal factor contributing to PH risk, suggesting a potential therapeutic target. This study reveals that glycolysis-induced histone lactylation drives PASMCs proliferation and vascular remodeling in PH. Targeting lactate metabolism and histone lactylation may provide a novel therapeutic approach.
期刊介绍:
Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell.
In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.