Machine learning for identifying liver and pancreas cancers through comprehensive serum glycopeptide spectra analysis: a case-control study.

IF 4.5 2区 医学 Q1 Biochemistry, Genetics and Molecular Biology
Motoyuki Kohjima, Yuko Takami, Ken Kawabe, Kazuhiro Tanabe, Chihiro Hayashi, Mikio Mikami, Tetsuya Kusumoto
{"title":"Machine learning for identifying liver and pancreas cancers through comprehensive serum glycopeptide spectra analysis: a case-control study.","authors":"Motoyuki Kohjima, Yuko Takami, Ken Kawabe, Kazuhiro Tanabe, Chihiro Hayashi, Mikio Mikami, Tetsuya Kusumoto","doi":"10.1002/1878-0261.70084","DOIUrl":null,"url":null,"abstract":"<p><p>Liver and pancreatic cancers are difficult to detect early, leading to high mortality rates. Blood-based diagnostics present a viable alternative for earlier detection, potentially improving survival rates. The comprehensive serum glycopeptide spectra analysis (CSGSA) method combines enriched glycopeptides (EGPs) with conventional tumor markers through machine learning to accurately identify early stage cancers. Here, we analyzed nine tumor markers (CA19-9, AFP, PSA, CEA, CA125, CYFRA, CA15-3, SCC antigen, and NCC-ST439) in 119 patients with pancreatic cancer and 49 with hepatocellular carcinoma, alongside 590 healthy controls. We also analyzed EGPs using liquid chromatography-mass spectrometry. We found that α1-antitrypsin with a fully sialylated biantennary glycan at asparagine 271 and α2-macroglobulin with a fully sialylated biantennary glycan at asparagine 70 effectively distinguished liver and pancreatic cancers. The integration of these two glycopeptides, along with the nine tumor markers and 1688 EGPs using a machine learning model enhanced diagnostic accuracy, achieving a receiver operating characteristic-area under curve (ROC-AUC) score of 0.996. CSGSA has the potential to minimize the need for invasive diagnostic procedures and serves as a promising tool for widespread screening.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/1878-0261.70084","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Liver and pancreatic cancers are difficult to detect early, leading to high mortality rates. Blood-based diagnostics present a viable alternative for earlier detection, potentially improving survival rates. The comprehensive serum glycopeptide spectra analysis (CSGSA) method combines enriched glycopeptides (EGPs) with conventional tumor markers through machine learning to accurately identify early stage cancers. Here, we analyzed nine tumor markers (CA19-9, AFP, PSA, CEA, CA125, CYFRA, CA15-3, SCC antigen, and NCC-ST439) in 119 patients with pancreatic cancer and 49 with hepatocellular carcinoma, alongside 590 healthy controls. We also analyzed EGPs using liquid chromatography-mass spectrometry. We found that α1-antitrypsin with a fully sialylated biantennary glycan at asparagine 271 and α2-macroglobulin with a fully sialylated biantennary glycan at asparagine 70 effectively distinguished liver and pancreatic cancers. The integration of these two glycopeptides, along with the nine tumor markers and 1688 EGPs using a machine learning model enhanced diagnostic accuracy, achieving a receiver operating characteristic-area under curve (ROC-AUC) score of 0.996. CSGSA has the potential to minimize the need for invasive diagnostic procedures and serves as a promising tool for widespread screening.

通过综合血清糖肽谱分析识别肝癌和胰腺癌的机器学习:一项病例对照研究。
肝癌和胰腺癌难以早期发现,导致高死亡率。基于血液的诊断为早期检测提供了一种可行的替代方法,有可能提高生存率。综合血清糖肽谱分析(CSGSA)方法通过机器学习将富集的糖肽(EGPs)与常规肿瘤标志物相结合,准确识别早期癌症。在这里,我们分析了119例胰腺癌患者和49例肝细胞癌患者以及590名健康对照者的9种肿瘤标志物(CA19-9、AFP、PSA、CEA、CA125、CYFRA、CA15-3、SCC抗原和nc - st439)。我们还使用液相色谱-质谱法分析了EGPs。我们发现α1-抗胰蛋白酶和α2-巨球蛋白分别在天冬酰胺271位点和天冬酰胺70位点上具有完全唾液化的双触角聚糖,可以有效地区分肝癌和胰腺癌。将这两种糖肽与9种肿瘤标志物和1688种egp结合使用机器学习模型提高了诊断准确性,获得了0.996的受试者工作特征曲线下面积(ROC-AUC)评分。CSGSA有可能减少对侵入性诊断程序的需求,并作为一种有前途的广泛筛查工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Oncology
Molecular Oncology Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
11.80
自引率
1.50%
发文量
203
审稿时长
10 weeks
期刊介绍: Molecular Oncology highlights new discoveries, approaches, and technical developments, in basic, clinical and discovery-driven translational cancer research. It publishes research articles, reviews (by invitation only), and timely science policy articles. The journal is now fully Open Access with all articles published over the past 10 years freely available.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信