Dongchen Xu, Min Wen, Bingwa Lebohang Anesu, Xijun Chen, Yuhao Chen, Wenqi Qian, Chenguang Yang, Jin Hai Zheng, Yinan Zhou, Haoqi Ni, Kunlin Jin, Qichuan Zhuge, Su Yang
{"title":"Genetically-engineered Salmonella typhimurium expressing FGF21 promotes neurological recovery in ischemic stroke via FGFR1/AMPK/mTOR pathway.","authors":"Dongchen Xu, Min Wen, Bingwa Lebohang Anesu, Xijun Chen, Yuhao Chen, Wenqi Qian, Chenguang Yang, Jin Hai Zheng, Yinan Zhou, Haoqi Ni, Kunlin Jin, Qichuan Zhuge, Su Yang","doi":"10.1186/s12974-025-03498-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Ischemic stroke (IS) remains a leading cause of mortality and disability, with limited therapeutic options due to poor drug delivery to ischemic lesions. To address this challenge, an engineered Salmonella based therapeutic method for targeted drug delivery and long-term treatment is herein designed to mitigate ischemic damage.</p><p><strong>Methods: </strong>We engineered an attenuated luminescent Salmonella typhimurium (S.t -ΔpG) strain with an L-arabinose-inducible pBAD system to secrete bioactive FGF21. C57BL/6 mice were used to to measure neuron apoptosis and the activity of immune cells following IS induction plus S.t-ΔpG injection. Bioluminescence imaging was applied for bacterial colonization. ELISA and glucose uptake assays were performed to detect FGF21 secretion and the bioactivity. Neurological tests, TTC staining, and TUNEL labeling were used to assess the therapeutic effects of barterially secreted FGF21. Immunofluorescence assay of FGF21/FGFR1 dominant pathway was explored to investigate neuroprotective mechanism, while IBA-1 staining, CD3/CD68 immunostaining, cytokine profiling, and hepatorenal histopathology were detected to evaluate biosecurity.</p><p><strong>Results: </strong>S.t-ΔpG<sup>FGF21</sup> selectively colonized peri-infarct regions and secreted functional FGF21, reducing neurologic deficits (48%) and infarct volume (46%) versus controls (p < 0.01). Mechanistically, immunofluorescence demonstrated that bacterially secreted FGF21 activated neuronal FGFR1/AMPK/mTOR pathway to enhance autophagy, whereas autophagy inhibition abolished its neuroprotection. Further, bacterial exclusion from neuron was validated via MAP2/NeuN plus Salmonella co-staining in primary neuron cells and brain tissue. Critically, CD3/CD68 immunostaining, serum cytokine profiling, and hepatorenal histopathology confirmed the long-term biosafety of this approach.</p><p><strong>Conclusion: </strong>Our study presents a novel, Salmonella - based platform for targeted and sustained FGF21 delivery, offering a promising therapeutic strategy for ischemic stroke with robust efficacy and minimal systemic toxicity.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"22 1","pages":"170"},"PeriodicalIF":10.1000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12205506/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroinflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12974-025-03498-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Ischemic stroke (IS) remains a leading cause of mortality and disability, with limited therapeutic options due to poor drug delivery to ischemic lesions. To address this challenge, an engineered Salmonella based therapeutic method for targeted drug delivery and long-term treatment is herein designed to mitigate ischemic damage.
Methods: We engineered an attenuated luminescent Salmonella typhimurium (S.t -ΔpG) strain with an L-arabinose-inducible pBAD system to secrete bioactive FGF21. C57BL/6 mice were used to to measure neuron apoptosis and the activity of immune cells following IS induction plus S.t-ΔpG injection. Bioluminescence imaging was applied for bacterial colonization. ELISA and glucose uptake assays were performed to detect FGF21 secretion and the bioactivity. Neurological tests, TTC staining, and TUNEL labeling were used to assess the therapeutic effects of barterially secreted FGF21. Immunofluorescence assay of FGF21/FGFR1 dominant pathway was explored to investigate neuroprotective mechanism, while IBA-1 staining, CD3/CD68 immunostaining, cytokine profiling, and hepatorenal histopathology were detected to evaluate biosecurity.
Results: S.t-ΔpGFGF21 selectively colonized peri-infarct regions and secreted functional FGF21, reducing neurologic deficits (48%) and infarct volume (46%) versus controls (p < 0.01). Mechanistically, immunofluorescence demonstrated that bacterially secreted FGF21 activated neuronal FGFR1/AMPK/mTOR pathway to enhance autophagy, whereas autophagy inhibition abolished its neuroprotection. Further, bacterial exclusion from neuron was validated via MAP2/NeuN plus Salmonella co-staining in primary neuron cells and brain tissue. Critically, CD3/CD68 immunostaining, serum cytokine profiling, and hepatorenal histopathology confirmed the long-term biosafety of this approach.
Conclusion: Our study presents a novel, Salmonella - based platform for targeted and sustained FGF21 delivery, offering a promising therapeutic strategy for ischemic stroke with robust efficacy and minimal systemic toxicity.
期刊介绍:
The Journal of Neuroinflammation is a peer-reviewed, open access publication that emphasizes the interaction between the immune system, particularly the innate immune system, and the nervous system. It covers various aspects, including the involvement of CNS immune mediators like microglia and astrocytes, the cytokines and chemokines they produce, and the influence of peripheral neuro-immune interactions, T cells, monocytes, complement proteins, acute phase proteins, oxidative injury, and related molecular processes.
Neuroinflammation is a rapidly expanding field that has significantly enhanced our knowledge of chronic neurological diseases. It attracts researchers from diverse disciplines such as pathology, biochemistry, molecular biology, genetics, clinical medicine, and epidemiology. Substantial contributions to this field have been made through studies involving populations, patients, postmortem tissues, animal models, and in vitro systems.
The Journal of Neuroinflammation consolidates research that centers around common pathogenic processes. It serves as a platform for integrative reviews and commentaries in this field.