Elizabeth B Wright, Erik G Larsen, Marco Padilla-Rodriguez, Paul R Langlais, Martha R C Bhattacharya
{"title":"Transmembrane protein 184B (TMEM184B) modulates endolysosomal acidification via the vesicular proton pump.","authors":"Elizabeth B Wright, Erik G Larsen, Marco Padilla-Rodriguez, Paul R Langlais, Martha R C Bhattacharya","doi":"10.1242/jcs.263908","DOIUrl":null,"url":null,"abstract":"<p><p>Disruption of endolysosomal acidification causes toxic protein accumulation and neuronal dysfunction linked to neurodevelopmental and neurodegenerative disorders. However, the molecular mechanisms regulating neuronal endolysosomal pH remain unclear. TMEM184B is a conserved 7-pass transmembrane protein essential for synaptic function, and sequence disruption is associated with neurodevelopmental disorders. Here we identify TMEM184B as a key regulator of endolysosomal acidification. TMEM184B localizes to early and late endosomes, and proteomic analysis confirms that TMEM184B interacts with endosomal proteins, including the vacuolar ATPase (V-ATPase), a multi-subunit proton pump critical for lumenal acidification. Tmem184b-mutant mouse cortical neurons have reduced endolysosomal acidification compared to wild type neurons. We find reductions in V-ATPase complex assembly in Tmem184b-mutant mouse brains, suggesting TMEM184B facilitates endosomal flux by promoting V-ATPase activity. These findings establish TMEM184B as a regulator of neuronal endosomal acidification and provide mechanistic insight into its role in TMEM184B-associated nervous system disorders.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cell science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jcs.263908","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Disruption of endolysosomal acidification causes toxic protein accumulation and neuronal dysfunction linked to neurodevelopmental and neurodegenerative disorders. However, the molecular mechanisms regulating neuronal endolysosomal pH remain unclear. TMEM184B is a conserved 7-pass transmembrane protein essential for synaptic function, and sequence disruption is associated with neurodevelopmental disorders. Here we identify TMEM184B as a key regulator of endolysosomal acidification. TMEM184B localizes to early and late endosomes, and proteomic analysis confirms that TMEM184B interacts with endosomal proteins, including the vacuolar ATPase (V-ATPase), a multi-subunit proton pump critical for lumenal acidification. Tmem184b-mutant mouse cortical neurons have reduced endolysosomal acidification compared to wild type neurons. We find reductions in V-ATPase complex assembly in Tmem184b-mutant mouse brains, suggesting TMEM184B facilitates endosomal flux by promoting V-ATPase activity. These findings establish TMEM184B as a regulator of neuronal endosomal acidification and provide mechanistic insight into its role in TMEM184B-associated nervous system disorders.