Live fast, die young: neutrophils streamline their metabolism to maximize inflammation.

IF 2.8 3区 医学 Q3 IMMUNOLOGY
Infection and Immunity Pub Date : 2025-08-12 Epub Date: 2025-06-30 DOI:10.1128/iai.00498-24
Bailey E Holder, Callista P Reber, Andrew J Monteith
{"title":"Live fast, die young: neutrophils streamline their metabolism to maximize inflammation.","authors":"Bailey E Holder, Callista P Reber, Andrew J Monteith","doi":"10.1128/iai.00498-24","DOIUrl":null,"url":null,"abstract":"<p><p>Neutrophils are the most abundant leukocytes at sites of inflammation and form the front line of the innate immune response. Neutrophils have a relatively short lifespan compared to other cell types, as they have streamlined their metabolic processes to support an arsenal of antimicrobial functions to combat invading pathogens at the cost of maximizing ATP output. To elicit antimicrobial stress, neutrophils rewire their glycolytic pathways to sustain phagocytosis and the oxidative burst and modify their mitochondrial metabolism to dictate degranulation or release of neutrophil extracellular traps. While many of these effector functions are sufficient to protect the \"healthy\" host from infection, chronic diseases disrupting metabolic and inflammatory homeostasis render the host susceptible to more frequent and severe bacterial infections. With the growing incidence of many metabolic and autoimmune diseases, a clearer understanding of the mechanisms regulating or disrupting neutrophil antimicrobial processes is required. This review focuses on the relationship between neutrophil function and metabolism and what is known about how this impacts autoimmune and metabolic diseases and/or disorders in the case of bacterial infection.</p>","PeriodicalId":13541,"journal":{"name":"Infection and Immunity","volume":" ","pages":"e0049824"},"PeriodicalIF":2.8000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12341380/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infection and Immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/iai.00498-24","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Neutrophils are the most abundant leukocytes at sites of inflammation and form the front line of the innate immune response. Neutrophils have a relatively short lifespan compared to other cell types, as they have streamlined their metabolic processes to support an arsenal of antimicrobial functions to combat invading pathogens at the cost of maximizing ATP output. To elicit antimicrobial stress, neutrophils rewire their glycolytic pathways to sustain phagocytosis and the oxidative burst and modify their mitochondrial metabolism to dictate degranulation or release of neutrophil extracellular traps. While many of these effector functions are sufficient to protect the "healthy" host from infection, chronic diseases disrupting metabolic and inflammatory homeostasis render the host susceptible to more frequent and severe bacterial infections. With the growing incidence of many metabolic and autoimmune diseases, a clearer understanding of the mechanisms regulating or disrupting neutrophil antimicrobial processes is required. This review focuses on the relationship between neutrophil function and metabolism and what is known about how this impacts autoimmune and metabolic diseases and/or disorders in the case of bacterial infection.

活得快,死得早:中性粒细胞简化新陈代谢,使炎症最大化。
中性粒细胞是炎症部位最丰富的白细胞,形成先天免疫反应的前线。与其他细胞类型相比,中性粒细胞的寿命相对较短,因为它们简化了代谢过程,以支持抗菌功能库,以最大限度地提高ATP输出为代价来对抗入侵的病原体。为了引起抗微生物应激,中性粒细胞重新连接其糖酵解途径以维持吞噬和氧化爆发,并修改其线粒体代谢以指示脱颗粒或释放中性粒细胞胞外陷阱。虽然许多这些效应功能足以保护“健康”的宿主免受感染,但慢性疾病破坏代谢和炎症稳态使宿主容易受到更频繁和严重的细菌感染。随着许多代谢和自身免疫性疾病的发病率不断增加,需要更清楚地了解调节或破坏中性粒细胞抗菌过程的机制。这篇综述的重点是中性粒细胞功能和代谢之间的关系,以及在细菌感染的情况下,它是如何影响自身免疫和代谢疾病和/或疾病的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Infection and Immunity
Infection and Immunity 医学-传染病学
CiteScore
6.00
自引率
6.50%
发文量
268
审稿时长
3 months
期刊介绍: Infection and Immunity (IAI) provides new insights into the interactions between bacterial, fungal and parasitic pathogens and their hosts. Specific areas of interest include mechanisms of molecular pathogenesis, virulence factors, cellular microbiology, experimental models of infection, host resistance or susceptibility, and the generation of innate and adaptive immune responses. IAI also welcomes studies of the microbiome relating to host-pathogen interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信