{"title":"In-silico guided identification and <i>in-vitro</i> studies of potential FFAR4 agonists for type 2 diabetes mellitus therapy.","authors":"Divya Jhinjharia, Pinky Juneja, Gaurava Srivastava, Kiran Bharat Lokhande, Aarti Sharma, Jitendra Singh Rathore, Savneet Kaur, Shakti Sahi","doi":"10.1080/17460441.2025.2522896","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The activation of free fatty acid receptor 4 (FFAR4) enhances insulin sensitivity and glucose uptake while mitigating inflammation. It is a promising therapeutic approach for managing type 2 diabetes mellitus (T2DM).</p><p><strong>Research design and methods: </strong>Structure and Ligand-based screening approaches were employed to evaluate 1.1 million molecules for FFAR4 agonistic activity. Eight promising candidates were selected based on their binding affinity, non-bonded interactions, and pharmacokinetic properties and subjected to 500 ns molecular dynamics simulations (MDS). The therapeutic efficacy of compounds was assessed through in vitro assays, including cell viability tests, glucose uptake analysis, and gene expression profiling.</p><p><strong>Results: </strong>The analysis revealed several residues (VAL98, ARG99, ARG183, ARG22, ARG24, GLU43, and TRP305) that are essential for biological activity. Insights into the mechanistic contribution of amino acid residues located in the extracellular and intracellular loops of FFAR4 to ligand binding were obtained through MDS analysis. The binding energy values indicate a stronger binding affinity between the FFAR4 and hit molecules. In vitro experiments on selected compounds (Comp35, CompN1, CompN2, and diosmetin) confirmed their potential effects on insulin-stimulated glucose uptake, IR, inflammation, and diabetic pathways.</p><p><strong>Conclusions: </strong>Comp35, diosmetin, CompN1, and CompN2 were found to be potential hit agonists and can be developed for therapy.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":" ","pages":"1-18"},"PeriodicalIF":6.0000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Opinion on Drug Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17460441.2025.2522896","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The activation of free fatty acid receptor 4 (FFAR4) enhances insulin sensitivity and glucose uptake while mitigating inflammation. It is a promising therapeutic approach for managing type 2 diabetes mellitus (T2DM).
Research design and methods: Structure and Ligand-based screening approaches were employed to evaluate 1.1 million molecules for FFAR4 agonistic activity. Eight promising candidates were selected based on their binding affinity, non-bonded interactions, and pharmacokinetic properties and subjected to 500 ns molecular dynamics simulations (MDS). The therapeutic efficacy of compounds was assessed through in vitro assays, including cell viability tests, glucose uptake analysis, and gene expression profiling.
Results: The analysis revealed several residues (VAL98, ARG99, ARG183, ARG22, ARG24, GLU43, and TRP305) that are essential for biological activity. Insights into the mechanistic contribution of amino acid residues located in the extracellular and intracellular loops of FFAR4 to ligand binding were obtained through MDS analysis. The binding energy values indicate a stronger binding affinity between the FFAR4 and hit molecules. In vitro experiments on selected compounds (Comp35, CompN1, CompN2, and diosmetin) confirmed their potential effects on insulin-stimulated glucose uptake, IR, inflammation, and diabetic pathways.
Conclusions: Comp35, diosmetin, CompN1, and CompN2 were found to be potential hit agonists and can be developed for therapy.
期刊介绍:
Expert Opinion on Drug Discovery (ISSN 1746-0441 [print], 1746-045X [electronic]) is a MEDLINE-indexed, peer-reviewed, international journal publishing review articles on novel technologies involved in the drug discovery process, leading to new leads and reduced attrition rates. Each article is structured to incorporate the author’s own expert opinion on the scope for future development.
The Editors welcome:
Reviews covering chemoinformatics; bioinformatics; assay development; novel screening technologies; in vitro/in vivo models; structure-based drug design; systems biology
Drug Case Histories examining the steps involved in the preclinical and clinical development of a particular drug
The audience consists of scientists and managers in the healthcare and pharmaceutical industry, academic pharmaceutical scientists and other closely related professionals looking to enhance the success of their drug candidates through optimisation at the preclinical level.