In-silico guided identification and in-vitro studies of potential FFAR4 agonists for type 2 diabetes mellitus therapy.

IF 6 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Divya Jhinjharia, Pinky Juneja, Gaurava Srivastava, Kiran Bharat Lokhande, Aarti Sharma, Jitendra Singh Rathore, Savneet Kaur, Shakti Sahi
{"title":"In-silico guided identification and <i>in-vitro</i> studies of potential FFAR4 agonists for type 2 diabetes mellitus therapy.","authors":"Divya Jhinjharia, Pinky Juneja, Gaurava Srivastava, Kiran Bharat Lokhande, Aarti Sharma, Jitendra Singh Rathore, Savneet Kaur, Shakti Sahi","doi":"10.1080/17460441.2025.2522896","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The activation of free fatty acid receptor 4 (FFAR4) enhances insulin sensitivity and glucose uptake while mitigating inflammation. It is a promising therapeutic approach for managing type 2 diabetes mellitus (T2DM).</p><p><strong>Research design and methods: </strong>Structure and Ligand-based screening approaches were employed to evaluate 1.1 million molecules for FFAR4 agonistic activity. Eight promising candidates were selected based on their binding affinity, non-bonded interactions, and pharmacokinetic properties and subjected to 500 ns molecular dynamics simulations (MDS). The therapeutic efficacy of compounds was assessed through in vitro assays, including cell viability tests, glucose uptake analysis, and gene expression profiling.</p><p><strong>Results: </strong>The analysis revealed several residues (VAL98, ARG99, ARG183, ARG22, ARG24, GLU43, and TRP305) that are essential for biological activity. Insights into the mechanistic contribution of amino acid residues located in the extracellular and intracellular loops of FFAR4 to ligand binding were obtained through MDS analysis. The binding energy values indicate a stronger binding affinity between the FFAR4 and hit molecules. In vitro experiments on selected compounds (Comp35, CompN1, CompN2, and diosmetin) confirmed their potential effects on insulin-stimulated glucose uptake, IR, inflammation, and diabetic pathways.</p><p><strong>Conclusions: </strong>Comp35, diosmetin, CompN1, and CompN2 were found to be potential hit agonists and can be developed for therapy.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":" ","pages":"1-18"},"PeriodicalIF":6.0000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Opinion on Drug Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17460441.2025.2522896","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The activation of free fatty acid receptor 4 (FFAR4) enhances insulin sensitivity and glucose uptake while mitigating inflammation. It is a promising therapeutic approach for managing type 2 diabetes mellitus (T2DM).

Research design and methods: Structure and Ligand-based screening approaches were employed to evaluate 1.1 million molecules for FFAR4 agonistic activity. Eight promising candidates were selected based on their binding affinity, non-bonded interactions, and pharmacokinetic properties and subjected to 500 ns molecular dynamics simulations (MDS). The therapeutic efficacy of compounds was assessed through in vitro assays, including cell viability tests, glucose uptake analysis, and gene expression profiling.

Results: The analysis revealed several residues (VAL98, ARG99, ARG183, ARG22, ARG24, GLU43, and TRP305) that are essential for biological activity. Insights into the mechanistic contribution of amino acid residues located in the extracellular and intracellular loops of FFAR4 to ligand binding were obtained through MDS analysis. The binding energy values indicate a stronger binding affinity between the FFAR4 and hit molecules. In vitro experiments on selected compounds (Comp35, CompN1, CompN2, and diosmetin) confirmed their potential effects on insulin-stimulated glucose uptake, IR, inflammation, and diabetic pathways.

Conclusions: Comp35, diosmetin, CompN1, and CompN2 were found to be potential hit agonists and can be developed for therapy.

用于2型糖尿病治疗的潜在FFAR4激动剂的计算机引导鉴定和体外研究
背景:游离脂肪酸受体4 (FFAR4)的激活增强胰岛素敏感性和葡萄糖摄取,同时减轻炎症。它是治疗2型糖尿病(T2DM)的一种很有前途的治疗方法。研究设计与方法:采用基于结构和配体的筛选方法,对110万分子进行FFAR4的拮抗活性评估。根据它们的结合亲和力、非键相互作用和药代动力学特性,选择了8个有希望的候选药物,并进行了500 ns分子动力学模拟(MDS)。化合物的治疗效果通过体外试验进行评估,包括细胞活力测试、葡萄糖摄取分析和基因表达谱。结果:分析发现了几个对生物活性至关重要的残基(VAL98、ARG99、ARG183、ARG22、ARG24、GLU43和TRP305)。MDS分析揭示了FFAR4胞外环和胞内环氨基酸残基对配体结合的机制贡献。结合能值表明FFAR4与击中分子之间的结合亲和力更强。在体外实验中,选定的化合物(Comp35、CompN1、CompN2和薯蓣皂苷)证实了它们对胰岛素刺激的葡萄糖摄取、IR、炎症和糖尿病途径的潜在影响。结论:Comp35、薯蓣皂苷、CompN1和CompN2是潜在的打击激动剂,可以开发用于治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.20
自引率
1.60%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Expert Opinion on Drug Discovery (ISSN 1746-0441 [print], 1746-045X [electronic]) is a MEDLINE-indexed, peer-reviewed, international journal publishing review articles on novel technologies involved in the drug discovery process, leading to new leads and reduced attrition rates. Each article is structured to incorporate the author’s own expert opinion on the scope for future development. The Editors welcome: Reviews covering chemoinformatics; bioinformatics; assay development; novel screening technologies; in vitro/in vivo models; structure-based drug design; systems biology Drug Case Histories examining the steps involved in the preclinical and clinical development of a particular drug The audience consists of scientists and managers in the healthcare and pharmaceutical industry, academic pharmaceutical scientists and other closely related professionals looking to enhance the success of their drug candidates through optimisation at the preclinical level.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信