Ondrej Klempir, Adela Skryjova, Ales Tichopad, Radim Krupicka
{"title":"Ranking pre-trained speech embeddings in Parkinson's disease detection: Does Wav2Vec 2.0 outperform its 1.0 version across speech modes and languages?","authors":"Ondrej Klempir, Adela Skryjova, Ales Tichopad, Radim Krupicka","doi":"10.1016/j.csbj.2025.06.022","DOIUrl":null,"url":null,"abstract":"<p><p>Speech and language technologies are effective tools for identifying the distinct speech changes associated with Parkinson's disease (PD), enabling earlier and more accurate diagnosis. Models leveraging recent advancements in self-supervised speech pretraining, such as Wav2Vec, have demonstrated superior performance over traditional feature extraction methods. While Wav2Vec 2.0 has been successfully utilized for PD detection, a rigorous quantitative comparison with Wav2Vec 1.0 is needed to comprehensively evaluate its advantages, limitations, and applicability across different speech modes in PD. This study presents a systematic comparison of Wav2Vec 1.0 and Wav2Vec 2.0 embeddings across three multilingual datasets using various classification approaches to classify normal (healthy controls; HC) and PD-affected speech. Additionally, both Wav2Vec 1.0 and 2.0 were benchmarked against traditional baseline features across diverse linguistic contexts, including spontaneous speech, non-spontaneous speech, and isolated vowels. A multicriteria TOPSIS approach was employed to rank feature extraction methods, revealing that Wav2Vec 2.0 excelled across speech modes, with its first transformer layer demonstrating the best performance for classifying read text and monologue, and its feature extractor performing best in vowel-based classification. In contrast, Wav2Vec 1.0, while generally outperformed by Wav2Vec 2.0, still provided a more efficient alternative with competitive performance. Finally, we combined selected layers from both architectures and have demonstrated improved diagnostic accuracy in vowel-based classification. This comparative analysis underscores the strengths of both Wav2Vec architectures and informs their optimal use in PD detection.</p>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"27 ","pages":"2584-2601"},"PeriodicalIF":4.1000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12206144/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.csbj.2025.06.022","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Speech and language technologies are effective tools for identifying the distinct speech changes associated with Parkinson's disease (PD), enabling earlier and more accurate diagnosis. Models leveraging recent advancements in self-supervised speech pretraining, such as Wav2Vec, have demonstrated superior performance over traditional feature extraction methods. While Wav2Vec 2.0 has been successfully utilized for PD detection, a rigorous quantitative comparison with Wav2Vec 1.0 is needed to comprehensively evaluate its advantages, limitations, and applicability across different speech modes in PD. This study presents a systematic comparison of Wav2Vec 1.0 and Wav2Vec 2.0 embeddings across three multilingual datasets using various classification approaches to classify normal (healthy controls; HC) and PD-affected speech. Additionally, both Wav2Vec 1.0 and 2.0 were benchmarked against traditional baseline features across diverse linguistic contexts, including spontaneous speech, non-spontaneous speech, and isolated vowels. A multicriteria TOPSIS approach was employed to rank feature extraction methods, revealing that Wav2Vec 2.0 excelled across speech modes, with its first transformer layer demonstrating the best performance for classifying read text and monologue, and its feature extractor performing best in vowel-based classification. In contrast, Wav2Vec 1.0, while generally outperformed by Wav2Vec 2.0, still provided a more efficient alternative with competitive performance. Finally, we combined selected layers from both architectures and have demonstrated improved diagnostic accuracy in vowel-based classification. This comparative analysis underscores the strengths of both Wav2Vec architectures and informs their optimal use in PD detection.
期刊介绍:
Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to:
Structure and function of proteins, nucleic acids and other macromolecules
Structure and function of multi-component complexes
Protein folding, processing and degradation
Enzymology
Computational and structural studies of plant systems
Microbial Informatics
Genomics
Proteomics
Metabolomics
Algorithms and Hypothesis in Bioinformatics
Mathematical and Theoretical Biology
Computational Chemistry and Drug Discovery
Microscopy and Molecular Imaging
Nanotechnology
Systems and Synthetic Biology