{"title":"Enhancer hijacking drives FAM20C expression to promote papillary thyroid cancer progression.","authors":"Xianhui Ruan, Wei Zhang, Xiukun Hou, Guiming Fu, Weike Ma, Jianfeng Huang, Yuyang Qian, Mengran Tian, Nan Qin, Yupeng Chen, Ming Gao, Dapeng Li, Xiangqian Zheng","doi":"10.1038/s41417-025-00930-8","DOIUrl":null,"url":null,"abstract":"<p><p>Papillary thyroid cancer (PTC) is the most common endocrine cancer, with a good prognosis in most cases. However, aggressive PTC can metastasise or reoccur and become refractory disease. Therefore, it's urgent to uncover new biomarkers for aggressive PTC. Accumulating evidence suggests that aberrant enhancers and targeted gene transcription drive the progression of PTC. To identify the cancer-specific enhancers and their downstream genes in PTC, we profiled the transcriptomes (RNA-seq) and enhancer-based epigenomic reorganisation (ChIP-seq) of cancer tissues and matched normal tissues from three PTC patients. Importantly, six candidate genes (RHBDF1, FAM20C, PHLDA2, TMPRSS6, LAD1, and BGN) were identified to be consistently upregulated by enhancers in PTC and correlated with prognosis. Further experiments verified the function of enhancers governing FAM20C in regulating PTC tumorigenesis, thereby unveiling a FAM20C-governed oncogenic mechanism for suppressing two cytokines (TNF-α and TGF-β) in PTC. Additionally, we demonstrated that a FAM20C inhibitor (3r) suppressed the proliferation and invasion of thyroid cancer cells in vitro and vivo. Moreover, FAM20C is driven by KLF12 through its enhancer. Collectively, our study uncovers the potential correlations between the aberrant activation of cancer-specific enhancers and PTC tumorigenesis and identifies FAM20C as a novel target for PTC.</p>","PeriodicalId":9577,"journal":{"name":"Cancer gene therapy","volume":" ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer gene therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41417-025-00930-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Papillary thyroid cancer (PTC) is the most common endocrine cancer, with a good prognosis in most cases. However, aggressive PTC can metastasise or reoccur and become refractory disease. Therefore, it's urgent to uncover new biomarkers for aggressive PTC. Accumulating evidence suggests that aberrant enhancers and targeted gene transcription drive the progression of PTC. To identify the cancer-specific enhancers and their downstream genes in PTC, we profiled the transcriptomes (RNA-seq) and enhancer-based epigenomic reorganisation (ChIP-seq) of cancer tissues and matched normal tissues from three PTC patients. Importantly, six candidate genes (RHBDF1, FAM20C, PHLDA2, TMPRSS6, LAD1, and BGN) were identified to be consistently upregulated by enhancers in PTC and correlated with prognosis. Further experiments verified the function of enhancers governing FAM20C in regulating PTC tumorigenesis, thereby unveiling a FAM20C-governed oncogenic mechanism for suppressing two cytokines (TNF-α and TGF-β) in PTC. Additionally, we demonstrated that a FAM20C inhibitor (3r) suppressed the proliferation and invasion of thyroid cancer cells in vitro and vivo. Moreover, FAM20C is driven by KLF12 through its enhancer. Collectively, our study uncovers the potential correlations between the aberrant activation of cancer-specific enhancers and PTC tumorigenesis and identifies FAM20C as a novel target for PTC.
期刊介绍:
Cancer Gene Therapy is the essential gene and cellular therapy resource for cancer researchers and clinicians, keeping readers up to date with the latest developments in gene and cellular therapies for cancer. The journal publishes original laboratory and clinical research papers, case reports and review articles. Publication topics include RNAi approaches, drug resistance, hematopoietic progenitor cell gene transfer, cancer stem cells, cellular therapies, homologous recombination, ribozyme technology, antisense technology, tumor immunotherapy and tumor suppressors, translational research, cancer therapy, gene delivery systems (viral and non-viral), anti-gene therapy (antisense, siRNA & ribozymes), apoptosis; mechanisms and therapies, vaccine development, immunology and immunotherapy, DNA synthesis and repair.
Cancer Gene Therapy publishes the results of laboratory investigations, preclinical studies, and clinical trials in the field of gene transfer/gene therapy and cellular therapies as applied to cancer research. Types of articles published include original research articles; case reports; brief communications; review articles in the main fields of drug resistance/sensitivity, gene therapy, cellular therapy, tumor suppressor and anti-oncogene therapy, cytokine/tumor immunotherapy, etc.; industry perspectives; and letters to the editor.