C S Salinas, K Magudia, A Sangal, L Ren, W P Segars
{"title":"In-silico CT simulations of deep learning generated heterogeneous phantoms.","authors":"C S Salinas, K Magudia, A Sangal, L Ren, W P Segars","doi":"10.1088/2057-1976/ade9c9","DOIUrl":null,"url":null,"abstract":"<p><p>Current virtual imaging phantoms primarily emphasize geometric accuracy of anatomical structures. However, to enhance realism, it is also important to incorporate intra-organ detail. Because biological tissues are heterogeneous in composition, virtual phantoms should reflect this by including realistic intra-organ texture and material variation. We propose training two 3D Double U-Net conditional generative adversarial networks (3D DUC-GAN) to generate sixteen unique textures that encompass organs found within the torso. The model was trained on 378 CT image-segmentation pairs taken from a publicly available dataset with 18 additional pairs reserved for testing. Textured phantoms were generated and imaged using DukeSim, a virtual CT simulation platform. Results showed that the deep learning model was able to synthesize realistic heterogeneous phantoms from a set of homogeneous phantoms. These phantoms were compared with original CT scans and had a mean absolute difference of 46.15 ± 1.06 HU. The structural similarity index (SSIM) and peak signal-to-noise ratio (PSNR) were 0.86 ± 0.004 and 28.62 ± 0.14, respectively. The maximum mean discrepancy between the generated and actual distribution was 0.0016. These metrics marked an improvement of 27%, 5.9%, 6.2%, and 28% respectively, compared to current homogeneous texture methods. The generated phantoms that underwent a virtual CT scan had a closer visual resemblance to the true CT scan compared to the previous method. The resulting heterogeneous phantoms offer a significant step toward more realistic in silico trials, enabling enhanced simulation of imaging procedures with greater fidelity to true anatomical variation.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ade9c9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Current virtual imaging phantoms primarily emphasize geometric accuracy of anatomical structures. However, to enhance realism, it is also important to incorporate intra-organ detail. Because biological tissues are heterogeneous in composition, virtual phantoms should reflect this by including realistic intra-organ texture and material variation. We propose training two 3D Double U-Net conditional generative adversarial networks (3D DUC-GAN) to generate sixteen unique textures that encompass organs found within the torso. The model was trained on 378 CT image-segmentation pairs taken from a publicly available dataset with 18 additional pairs reserved for testing. Textured phantoms were generated and imaged using DukeSim, a virtual CT simulation platform. Results showed that the deep learning model was able to synthesize realistic heterogeneous phantoms from a set of homogeneous phantoms. These phantoms were compared with original CT scans and had a mean absolute difference of 46.15 ± 1.06 HU. The structural similarity index (SSIM) and peak signal-to-noise ratio (PSNR) were 0.86 ± 0.004 and 28.62 ± 0.14, respectively. The maximum mean discrepancy between the generated and actual distribution was 0.0016. These metrics marked an improvement of 27%, 5.9%, 6.2%, and 28% respectively, compared to current homogeneous texture methods. The generated phantoms that underwent a virtual CT scan had a closer visual resemblance to the true CT scan compared to the previous method. The resulting heterogeneous phantoms offer a significant step toward more realistic in silico trials, enabling enhanced simulation of imaging procedures with greater fidelity to true anatomical variation.
期刊介绍:
BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.