Behavior-driven monitoring of thermogenesis in mice using a thermal gradient ring.

IF 3.1 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Paulo De Melo, Nayara Pereira, Rafaela Braun Araujo, William T Festuccia, Thiago Mattar Cunha, Luiz Osório Leiria
{"title":"Behavior-driven monitoring of thermogenesis in mice using a thermal gradient ring.","authors":"Paulo De Melo, Nayara Pereira, Rafaela Braun Araujo, William T Festuccia, Thiago Mattar Cunha, Luiz Osório Leiria","doi":"10.1152/ajpendo.00133.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Accurately assessing whole body heat production requires reliable thermometry methods. In mice, common approaches include rectal temperature (RT) measurement, infrared (IR) thermography, and implanted probes. However, factors such as stress, handling, surgery, and variability limit their applicability for evaluating thermogenesis. The Thermal Gradient Ring (TGR), widely used in neuropathic pain and ion channel studies, consists of a circular structure with 12 temperature zones and an integrated camera for real-time behavior monitoring. This system allows for precise analysis of independent behavioral measures, including preferred temperature (PT), distance accumulation in the zones, locomotion pattern, and zone occupancy over time, thereby offering an indirect readout of thermoregulatory state. In this study, we evaluated TGR as a noninvasive tool to detect thermoregulatory behavior adaptations, quantifying zone occupancy time, mobility patterns across temperature gradients, and preferred temperature. Using models with both elevated (β-adrenergic stimulation and high-fat diet feeding) and reduced core body temperature [brown adipose tissue (BAT) lipectomy, uncoupling protein 1 (UCP1) deficiency, and cold exposure], we found that the TGR system reliably detects context-specific thermoregulatory behaviors that contribute to energy homeostasis, while simultaneously serving as a quantitative tool for evaluating thermogenic status. These findings suggest that TGR is a valuable tool for metabolic research, offering a reliable additional assessment for thermogenesis in mice.<b>NEW & NOTEWORTHY</b> The integration between adaptive thermogenesis and behavioral strategies governing metabolic state regulation in mice remains poorly characterized. Using a TGR system, we developed and validated a novel methodology for noninvasive, unbiased, and continuous monitoring of behavior-driven thermogenic capacity. Using loss- and gain-of-function models of BAT thermogenesis, we identified distinct behavioral strategies, mice dynamically adjusted locomotor activity and thermal zone occupancy to modulate heat production, directly reflecting their real-time monitoring of metabolic status.</p>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":" ","pages":"E241-E253"},"PeriodicalIF":3.1000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Endocrinology and metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpendo.00133.2025","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Accurately assessing whole body heat production requires reliable thermometry methods. In mice, common approaches include rectal temperature (RT) measurement, infrared (IR) thermography, and implanted probes. However, factors such as stress, handling, surgery, and variability limit their applicability for evaluating thermogenesis. The Thermal Gradient Ring (TGR), widely used in neuropathic pain and ion channel studies, consists of a circular structure with 12 temperature zones and an integrated camera for real-time behavior monitoring. This system allows for precise analysis of independent behavioral measures, including preferred temperature (PT), distance accumulation in the zones, locomotion pattern, and zone occupancy over time, thereby offering an indirect readout of thermoregulatory state. In this study, we evaluated TGR as a noninvasive tool to detect thermoregulatory behavior adaptations, quantifying zone occupancy time, mobility patterns across temperature gradients, and preferred temperature. Using models with both elevated (β-adrenergic stimulation and high-fat diet feeding) and reduced core body temperature [brown adipose tissue (BAT) lipectomy, uncoupling protein 1 (UCP1) deficiency, and cold exposure], we found that the TGR system reliably detects context-specific thermoregulatory behaviors that contribute to energy homeostasis, while simultaneously serving as a quantitative tool for evaluating thermogenic status. These findings suggest that TGR is a valuable tool for metabolic research, offering a reliable additional assessment for thermogenesis in mice.NEW & NOTEWORTHY The integration between adaptive thermogenesis and behavioral strategies governing metabolic state regulation in mice remains poorly characterized. Using a TGR system, we developed and validated a novel methodology for noninvasive, unbiased, and continuous monitoring of behavior-driven thermogenic capacity. Using loss- and gain-of-function models of BAT thermogenesis, we identified distinct behavioral strategies, mice dynamically adjusted locomotor activity and thermal zone occupancy to modulate heat production, directly reflecting their real-time monitoring of metabolic status.

用热梯度环对小鼠产热行为的监测。
准确评估全身产热需要可靠的测温方法。在小鼠中,常见的方法包括直肠温度(RT)测量,红外(IR)热成像和植入探针。然而,诸如压力、操作、手术和可变性等因素限制了它们在评估产热方面的适用性。热梯度环(TGR)广泛应用于神经性疼痛和离子通道研究,它由一个具有12个温度区域的圆形结构和一个用于实时行为监测的集成摄像头组成。该系统可以精确分析独立的行为测量,包括首选温度(PT)、区域内的距离积累、运动模式和区域占用,从而间接读出温度调节状态。在这项研究中,我们评估了TGR作为一种非侵入性工具来检测温度调节行为适应,量化区域占用时间,跨温度梯度的迁移模式和首选温度。通过升高(β-肾上腺素能刺激和高脂肪饮食喂养)和降低核心体温(BAT脂肪切除术,UCP1缺乏和冷暴露)的模型,我们发现TGR系统可靠地检测有助于能量稳态的环境特异性体温调节行为,同时作为评估产热状态的定量工具。这些发现表明,TGR是代谢研究的一个有价值的工具,为小鼠的产热提供了可靠的额外评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.80
自引率
0.00%
发文量
98
审稿时长
1 months
期刊介绍: The American Journal of Physiology-Endocrinology and Metabolism publishes original, mechanistic studies on the physiology of endocrine and metabolic systems. Physiological, cellular, and molecular studies in whole animals or humans will be considered. Specific themes include, but are not limited to, mechanisms of hormone and growth factor action; hormonal and nutritional regulation of metabolism, inflammation, microbiome and energy balance; integrative organ cross talk; paracrine and autocrine control of endocrine cells; function and activation of hormone receptors; endocrine or metabolic control of channels, transporters, and membrane function; temporal analysis of hormone secretion and metabolism; and mathematical/kinetic modeling of metabolism. Novel molecular, immunological, or biophysical studies of hormone action are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信