Deep Learning and Machine Learning Insights Into the Global Economic Drivers of the Bitcoin Price

IF 3.4 3区 经济学 Q1 ECONOMICS
Nezir Köse, Yunus Emre Gür, Emre Ünal
{"title":"Deep Learning and Machine Learning Insights Into the Global Economic Drivers of the Bitcoin Price","authors":"Nezir Köse,&nbsp;Yunus Emre Gür,&nbsp;Emre Ünal","doi":"10.1002/for.3258","DOIUrl":null,"url":null,"abstract":"<p>This study examines the connection between Bitcoin and global factors, including the VIX, the oil price, the US dollar index, the gold price, and interest rates estimated using the Federal funds rate and treasury securities rate, for forecasting analysis. Deep learning methodologies, including LSTM, GRU, CNN, and TFT, with machine learning algorithms such as XGBoost, LightGBM, and SVR, were employed to identify the optimal prediction model for the Bitcoin price. The findings indicate that the TFT model is the most successful predictive approach, with the gold price identified as the most relevant component in determining the Bitcoin price. After the gold indicator, the US dollar index was a substantial factor in the explanation of the Bitcoin price. The TFT model also included regulatory decisions and global events. It was estimated that the Bitcoin price was significantly influenced by the COVID-19 pandemic. After that, global climate events and China mining ban strongly affected the Bitcoin price. These findings indicate that regulatory decisions and global events determine the Bitcoin price in addition to macroeconomic factors. The VAR analysis was employed as a robustness check. The results indicate that gold and oil prices have a strong negative influence on Bitcoin, particularly in the long term. The paper has significant policy implications for investors, portfolio managers, and scholars.</p>","PeriodicalId":47835,"journal":{"name":"Journal of Forecasting","volume":"44 5","pages":"1666-1698"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/for.3258","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/for.3258","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study examines the connection between Bitcoin and global factors, including the VIX, the oil price, the US dollar index, the gold price, and interest rates estimated using the Federal funds rate and treasury securities rate, for forecasting analysis. Deep learning methodologies, including LSTM, GRU, CNN, and TFT, with machine learning algorithms such as XGBoost, LightGBM, and SVR, were employed to identify the optimal prediction model for the Bitcoin price. The findings indicate that the TFT model is the most successful predictive approach, with the gold price identified as the most relevant component in determining the Bitcoin price. After the gold indicator, the US dollar index was a substantial factor in the explanation of the Bitcoin price. The TFT model also included regulatory decisions and global events. It was estimated that the Bitcoin price was significantly influenced by the COVID-19 pandemic. After that, global climate events and China mining ban strongly affected the Bitcoin price. These findings indicate that regulatory decisions and global events determine the Bitcoin price in addition to macroeconomic factors. The VAR analysis was employed as a robustness check. The results indicate that gold and oil prices have a strong negative influence on Bitcoin, particularly in the long term. The paper has significant policy implications for investors, portfolio managers, and scholars.

Abstract Image

深度学习和机器学习洞察比特币价格的全球经济驱动因素
本研究考察了比特币与全球因素之间的联系,包括波动率指数、油价、美元指数、黄金价格以及使用联邦基金利率和国债利率估算的利率,以进行预测分析。采用LSTM、GRU、CNN和TFT等深度学习方法,以及XGBoost、LightGBM和SVR等机器学习算法,确定了比特币价格的最佳预测模型。研究结果表明,TFT模型是最成功的预测方法,黄金价格被确定为决定比特币价格的最相关因素。继黄金指标之后,美元指数是解释比特币价格的一个重要因素。TFT模型还包括监管决策和全球事件。据估计,比特币价格受到新冠肺炎疫情的显著影响。此后,全球气候事件和中国的采矿禁令强烈影响了比特币的价格。这些发现表明,除了宏观经济因素外,监管决策和全球事件也决定了比特币的价格。采用VAR分析作为稳健性检验。结果表明,黄金和石油价格对比特币有很强的负面影响,特别是从长期来看。本文对投资者、投资组合经理和学者具有重要的政策意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
5.90%
发文量
91
期刊介绍: The Journal of Forecasting is an international journal that publishes refereed papers on forecasting. It is multidisciplinary, welcoming papers dealing with any aspect of forecasting: theoretical, practical, computational and methodological. A broad interpretation of the topic is taken with approaches from various subject areas, such as statistics, economics, psychology, systems engineering and social sciences, all encouraged. Furthermore, the Journal welcomes a wide diversity of applications in such fields as business, government, technology and the environment. Of particular interest are papers dealing with modelling issues and the relationship of forecasting systems to decision-making processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信