EmoVerse: Enhancing Multimodal Large Language Models for Affective Computing via Multitask Learning

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ao Li , Longwei Xu , Chen Ling , Jinghui Zhang , Pengwei Wang
{"title":"EmoVerse: Enhancing Multimodal Large Language Models for Affective Computing via Multitask Learning","authors":"Ao Li ,&nbsp;Longwei Xu ,&nbsp;Chen Ling ,&nbsp;Jinghui Zhang ,&nbsp;Pengwei Wang","doi":"10.1016/j.neucom.2025.130810","DOIUrl":null,"url":null,"abstract":"<div><div>Affective computing is essential for applications such as human–computer interaction. While Multimodal Large Language Models (MLLMs) demonstrate impressive general capabilities, they face considerable challenges in affective computing, particularly in detecting subtle facial expressions and handling complex affective tasks, such as emotion reason inference and understanding emotions in multimodal long-context scenarios. Furthermore, there is a lack of a unified MLLM that can effectively handle a wide range of affective tasks. To address these challenges, we propose <strong>Emotion Universe</strong> (EmoVerse), a MLLM trained through a <strong>M</strong>ultistage <strong>M</strong>ultitask <strong>S</strong>entiment and <strong>E</strong>motion (M2SE) instruction tuning strategy. Through this training strategy, EmoVerse acquires the ability to deeply analyze the underlying reasons for affective states. Besides, to address the lack of multitask datasets in affective computing, we introduce the <strong>Affective Multitask</strong> (AMT) Dataset, which supports multimodal sentiment analysis, multimodal emotion recognition, facial expression recognition, emotion reason inference, and emotion cause-pair extraction tasks. Extensive experiments demonstrate that EmoVerse outperforms existing methods, achieving state-of-the-art results in affective tasks. The code is available at <span><span>https://github.com/liaolea/EmoVerse</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"650 ","pages":"Article 130810"},"PeriodicalIF":6.5000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225014821","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Affective computing is essential for applications such as human–computer interaction. While Multimodal Large Language Models (MLLMs) demonstrate impressive general capabilities, they face considerable challenges in affective computing, particularly in detecting subtle facial expressions and handling complex affective tasks, such as emotion reason inference and understanding emotions in multimodal long-context scenarios. Furthermore, there is a lack of a unified MLLM that can effectively handle a wide range of affective tasks. To address these challenges, we propose Emotion Universe (EmoVerse), a MLLM trained through a Multistage Multitask Sentiment and Emotion (M2SE) instruction tuning strategy. Through this training strategy, EmoVerse acquires the ability to deeply analyze the underlying reasons for affective states. Besides, to address the lack of multitask datasets in affective computing, we introduce the Affective Multitask (AMT) Dataset, which supports multimodal sentiment analysis, multimodal emotion recognition, facial expression recognition, emotion reason inference, and emotion cause-pair extraction tasks. Extensive experiments demonstrate that EmoVerse outperforms existing methods, achieving state-of-the-art results in affective tasks. The code is available at https://github.com/liaolea/EmoVerse.
EmoVerse:通过多任务学习增强情感计算的多模态大型语言模型
情感计算对于人机交互等应用是必不可少的。虽然多模态大型语言模型(mllm)展示了令人印象深刻的通用能力,但它们在情感计算方面面临着相当大的挑战,特别是在检测微妙的面部表情和处理复杂的情感任务方面,例如情感推理和理解多模态长上下文场景中的情感。此外,缺乏一个统一的mlm,可以有效地处理广泛的情感任务。为了解决这些挑战,我们提出了情感宇宙(EmoVerse),这是一个通过多阶段多任务情绪和情感(M2SE)指令调整策略训练的mlm。通过这种训练策略,EmoVerse获得了深入分析情感状态潜在原因的能力。此外,为了解决情感计算中缺乏多任务数据集的问题,我们引入了情感多任务数据集(AMT),该数据集支持多模态情感分析、多模态情感识别、面部表情识别、情感原因推理和情感原因对提取任务。大量的实验表明,EmoVerse优于现有的方法,在情感任务中取得了最先进的结果。代码可在https://github.com/liaolea/EmoVerse上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信