A novel transfer matrix framework for multiple Dirac delta potentials

IF 2.3 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Joaquín Figueroa , Ivan Gonzalez , Daniel Salinas-Arizmendi
{"title":"A novel transfer matrix framework for multiple Dirac delta potentials","authors":"Joaquín Figueroa ,&nbsp;Ivan Gonzalez ,&nbsp;Daniel Salinas-Arizmendi","doi":"10.1016/j.physleta.2025.130785","DOIUrl":null,"url":null,"abstract":"<div><div>We present an analytical framework for studying quantum tunneling through multiple Dirac delta potential barriers in one dimension. Using the transfer matrix method, we derive a closed-form expression for the total transfer matrix of a system composed of <em>N</em> equally spaced delta barriers. In a systematic manner, a compact expression is obtained for the first element of the transfer matrix, based on triangular numbers. This, in turn, allows us to compute the transmission coefficient exactly as a function of the number of barriers. The proposed method successfully reproduces well-known results for one and two barriers and efficiently captures complex interference effects for larger values of <em>N</em>, such as <span><math><mi>N</mi><mo>=</mo><mn>4</mn></math></span>.</div></div>","PeriodicalId":20172,"journal":{"name":"Physics Letters A","volume":"555 ","pages":"Article 130785"},"PeriodicalIF":2.3000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375960125005651","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We present an analytical framework for studying quantum tunneling through multiple Dirac delta potential barriers in one dimension. Using the transfer matrix method, we derive a closed-form expression for the total transfer matrix of a system composed of N equally spaced delta barriers. In a systematic manner, a compact expression is obtained for the first element of the transfer matrix, based on triangular numbers. This, in turn, allows us to compute the transmission coefficient exactly as a function of the number of barriers. The proposed method successfully reproduces well-known results for one and two barriers and efficiently captures complex interference effects for larger values of N, such as N=4.
多重狄拉克δ势的一种新的传递矩阵框架
我们提出了一个分析框架,用于研究一维中多个狄拉克δ势垒的量子隧穿。利用传递矩阵法,导出了由N个等间距δ势垒组成的系统的总传递矩阵的封闭表达式。系统地得到了基于三角数的传递矩阵第一元素的紧凑表达式。这反过来又使我们能够精确地计算出作为势垒数的函数的透射系数。该方法成功地再现了一个和两个势垒的已知结果,并有效地捕获了较大N值(如N=4)下的复杂干扰效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics Letters A
Physics Letters A 物理-物理:综合
CiteScore
5.10
自引率
3.80%
发文量
493
审稿时长
30 days
期刊介绍: Physics Letters A offers an exciting publication outlet for novel and frontier physics. It encourages the submission of new research on: condensed matter physics, theoretical physics, nonlinear science, statistical physics, mathematical and computational physics, general and cross-disciplinary physics (including foundations), atomic, molecular and cluster physics, plasma and fluid physics, optical physics, biological physics and nanoscience. No articles on High Energy and Nuclear Physics are published in Physics Letters A. The journal''s high standard and wide dissemination ensures a broad readership amongst the physics community. Rapid publication times and flexible length restrictions give Physics Letters A the edge over other journals in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信