Interpretable machine learning models for evaluating strength of ternary geopolymers

IF 4.2
Junfei Zhang , Huisheng Cheng , Ninghui Sun , Zehui Huo , Junlin Chen
{"title":"Interpretable machine learning models for evaluating strength of ternary geopolymers","authors":"Junfei Zhang ,&nbsp;Huisheng Cheng ,&nbsp;Ninghui Sun ,&nbsp;Zehui Huo ,&nbsp;Junlin Chen","doi":"10.1016/j.aiig.2025.100128","DOIUrl":null,"url":null,"abstract":"<div><div>Ternary geopolymers incorporating multiple solid wastes such as steel slag (SS), fly ash (FA), and granulated blast furnace slag (GBFS) are considered environmentally friendly and exhibit enhanced performance. However, the mechanisms governing strength development and the design of optimal mixtures are not fully understood due to the complexity of their components. This study presents the development of four machine learning models—Artificial Neural Network (ANN), Support Vector Regression (SVR), Extremely Randomized Tree (ERT), and Gradient Boosting Regression (GBR)—for predicting the unconfined compressive strength (UCS) of ternary geopolymers. The models were trained using a dataset comprising 120 mixtures derived from laboratory tests. Shapley Additive Explanations analysis was employed to interpret the machine learning models and elucidate the influence of different components on the properties of ternary geopolymers. The results indicate that ANN exhibits the highest predictive accuracy for UCS (R = 0.949). Furthermore, the UCS of ternary geopolymers is most sensitive to the content of GBFS. This study provides valuable insights for optimizing the mix proportions in ternary blended geopolymer mixtures.</div></div>","PeriodicalId":100124,"journal":{"name":"Artificial Intelligence in Geosciences","volume":"6 2","pages":"Article 100128"},"PeriodicalIF":4.2000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666544125000243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ternary geopolymers incorporating multiple solid wastes such as steel slag (SS), fly ash (FA), and granulated blast furnace slag (GBFS) are considered environmentally friendly and exhibit enhanced performance. However, the mechanisms governing strength development and the design of optimal mixtures are not fully understood due to the complexity of their components. This study presents the development of four machine learning models—Artificial Neural Network (ANN), Support Vector Regression (SVR), Extremely Randomized Tree (ERT), and Gradient Boosting Regression (GBR)—for predicting the unconfined compressive strength (UCS) of ternary geopolymers. The models were trained using a dataset comprising 120 mixtures derived from laboratory tests. Shapley Additive Explanations analysis was employed to interpret the machine learning models and elucidate the influence of different components on the properties of ternary geopolymers. The results indicate that ANN exhibits the highest predictive accuracy for UCS (R = 0.949). Furthermore, the UCS of ternary geopolymers is most sensitive to the content of GBFS. This study provides valuable insights for optimizing the mix proportions in ternary blended geopolymer mixtures.
用于评估三元地聚合物强度的可解释机器学习模型
含有多种固体废物(如钢渣(SS)、粉煤灰(FA)和粒状高炉渣(GBFS))的三元地聚合物被认为是环保的,并表现出增强的性能。然而,由于其成分的复杂性,控制强度发展和最佳混合物设计的机制尚未完全了解。本研究提出了四种机器学习模型的发展-人工神经网络(ANN),支持向量回归(SVR),极度随机树(ERT)和梯度增强回归(GBR) -用于预测三元地聚合物的无侧限抗压强度(UCS)。这些模型使用由实验室测试得出的120种混合物组成的数据集进行训练。采用Shapley加性解释分析来解释机器学习模型,并阐明不同组分对三元地聚合物性质的影响。结果表明,人工神经网络对UCS的预测准确率最高(R = 0.949)。此外,三元地聚合物的UCS对GBFS的含量最为敏感。该研究为优化三元共混地聚合物混合物的混合比例提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信