On Yang-Mills Stability Bounds and Plaquette Field Generating Function

IF 1.2 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Paulo A. Faria da Veiga, Michael O'Carroll
{"title":"On Yang-Mills Stability Bounds and Plaquette Field Generating Function","authors":"Paulo A. Faria da Veiga,&nbsp;Michael O'Carroll","doi":"10.1016/S0034-4877(25)00035-7","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the local gauge-invariant Yang-Mills quantum field theory on the finite hyper-cubic lattice Λ ⊂ <em>aℤ<sup>d</sup></em> ⊂ <em>ℝ<sup>d</sup></em>, <em>d</em> = 2, 3, 4, <em>a</em> ∊ (0, 1], with <em>L</em> (even) sites on a side and with the gauge Lie groups \n\t\t\t\t<span><math><mi>G</mi></math></span> = U(<em>N</em>), <em>SU</em>(<em>N</em>). To each Λ bond <em>b</em>, there is a unitary matrix gauge variable <em>U<sub>b</sub></em> from an irrep of \n\t\t\t\t<span><math><mi>G</mi></math></span>. The vector gauge potentials (gluon fields) are parameters in the Lie algebra of \n\t\t\t\t<span><math><mi>G</mi></math></span>. The Wilson finite lattice partition function Z<sub>Λ</sub> (<em>a</em>) is used. The action A<sub>Λ</sub> (<em>a</em>) is a sum of gauge-invariant plaquette actions times \n\t\t\t\t<span><math><mrow><mrow><mo>[</mo><mrow><msup><mi>a</mi><mrow><mi>d</mi><mo>-</mo><mn>4</mn></mrow></msup><mo>/</mo><msup><mi>g</mi><mn>2</mn></msup></mrow><mo>]</mo></mrow></mrow></math></span>, \n\t\t\t\t<span><math><mrow><msup><mi>g</mi><mn>2</mn></msup><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><msubsup><mi>g</mi><mn>0</mn><mn>2</mn></msubsup><mo>]</mo></mrow></math></span>, \n\t\t\t\t<span><math><mrow><mn>0</mn><mo>&lt;</mo><msubsup><mi>g</mi><mn>0</mn><mn>2</mn></msubsup><mo>&lt;</mo><mo>∞</mo></mrow></math></span>. Each plaquette action has the product of four bond variables; the partition function is the integral over the Boltzmann factor with a product over bonds of \n\t\t\t\t<span><math><mi>G</mi></math></span> Haar measures. Formally, in the continuum, ultraviolet (UV) limit <em>a &amp;</em>drarr; 0, the action gives the YM classical continuum action. For free and periodic boundary conditions (b.c.), and using scaled fields, defined with an <em>a-</em>dependent noncanonical scaling, we show thermodynamic and UV stable (TUV) stability bounds for a scaled partition function, with constants independent of <em>L, a</em> and <em>g.</em> Passing to scaled fields does not alter the model energy-momentum spectrum and can be interpreted as an a priori field strength renormalization, making the action more regular. With scaled fields, we can isolate the UV singularity of the finite lattice physical, unscaled free energy <em>f</em>Λ(<em>a</em>) = [ln ZΛ ]/Λ<em><sub>s</sub></em>, where Λ<sub>s</sub> = <em>L<sup>d</sup></em> is the total number of lattice sites. With this, we show the existence of, at least, the subsequential thermodynamic (Λ &amp;nearr; <em>dℤ<sup>d</sup></em>) and UV limits of a scaled free energy. To obtain the TUV bounds, the Weyl integration formula is used in the gauge integral and the random matrix probability distributions of the CUE and GUE appear naturally. Using periodic b.c. and the multireflection method, the generating function of <em>r</em> scaled plaquette field correlations is bounded uniformly in <em>L, a, g</em> and the location/orientation of the <em>r</em> plaquette fields. Consequently, <em>r</em>-scaled plaquette field correlations are also bounded. We also show the physical two-plaquette field correlation at coincident points has an <em>a<sup>−d</sup></em> UV singular behaviour; the same as for the correlation of the derivative of free scalar unscaled fields at coincident points. Using the free scalar case as a reference, we then have a lattice characterization of UV asymptotic freedom.</div></div>","PeriodicalId":49630,"journal":{"name":"Reports on Mathematical Physics","volume":"95 3","pages":"Pages 303-380"},"PeriodicalIF":1.2000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034487725000357","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the local gauge-invariant Yang-Mills quantum field theory on the finite hyper-cubic lattice Λ ⊂ aℤdd, d = 2, 3, 4, a ∊ (0, 1], with L (even) sites on a side and with the gauge Lie groups G = U(N), SU(N). To each Λ bond b, there is a unitary matrix gauge variable Ub from an irrep of G. The vector gauge potentials (gluon fields) are parameters in the Lie algebra of G. The Wilson finite lattice partition function ZΛ (a) is used. The action AΛ (a) is a sum of gauge-invariant plaquette actions times [ad-4/g2], g2(0,g02], 0<g02<. Each plaquette action has the product of four bond variables; the partition function is the integral over the Boltzmann factor with a product over bonds of G Haar measures. Formally, in the continuum, ultraviolet (UV) limit a &drarr; 0, the action gives the YM classical continuum action. For free and periodic boundary conditions (b.c.), and using scaled fields, defined with an a-dependent noncanonical scaling, we show thermodynamic and UV stable (TUV) stability bounds for a scaled partition function, with constants independent of L, a and g. Passing to scaled fields does not alter the model energy-momentum spectrum and can be interpreted as an a priori field strength renormalization, making the action more regular. With scaled fields, we can isolate the UV singularity of the finite lattice physical, unscaled free energy fΛ(a) = [ln ZΛ ]/Λs, where Λs = Ld is the total number of lattice sites. With this, we show the existence of, at least, the subsequential thermodynamic (Λ &nearr; dℤd) and UV limits of a scaled free energy. To obtain the TUV bounds, the Weyl integration formula is used in the gauge integral and the random matrix probability distributions of the CUE and GUE appear naturally. Using periodic b.c. and the multireflection method, the generating function of r scaled plaquette field correlations is bounded uniformly in L, a, g and the location/orientation of the r plaquette fields. Consequently, r-scaled plaquette field correlations are also bounded. We also show the physical two-plaquette field correlation at coincident points has an a−d UV singular behaviour; the same as for the correlation of the derivative of free scalar unscaled fields at coincident points. Using the free scalar case as a reference, we then have a lattice characterization of UV asymptotic freedom.
关于Yang-Mills稳定界和斑块场生成函数
我们考虑有限超立方晶格上的局部规范不变Yang-Mills量子场论Λ∧a∈d, d = 2,3,4, a(0,1],在一侧有L(偶)个点,规范李群G = U(N), SU(N)。对于每个Λ键b,有一个来自g的正则矩阵规范变量Ub。向量规范势(胶子场)是g的李代数中的参数。使用Wilson有限点阵配分函数ZΛ (a)。动作AΛ (a)是尺度不变斑块动作次数的和[ad-4/g2], g2∈(0,g02], 0<g02<∞。每个斑块作用是四个键变量的乘积;配分函数是玻尔兹曼因子的积分和G哈尔测度键的乘积。正式地说,在连续介质中,紫外线(UV)的极限是有限的。0时,作用得到YM经典连续作用。对于自由和周期边界条件(b.c),并使用与a相关的非正则标度定义的标度场,我们展示了标度配分函数的热力学和紫外稳定(TUV)稳定性边界,其常数与L, a和g无关。传递到标度场不会改变模型的能量-动量谱,可以解释为先验的场强重整化,使作用更加规则。利用标度场,我们可以分离出有限晶格物理的UV奇点,无标度自由能fΛ(a) = [ln ZΛ]/Λs,其中Λs = Ld为晶格位的总数。由此,我们至少证明了后续热力学(Λ &near;;标度自由能的极限。在规范积分中采用Weyl积分公式得到TUV界,自然出现了CUE和GUE的随机矩阵概率分布。利用周期bc和多反射方法,r个尺度斑块场相关的生成函数在L、a、g和r个斑块场的位置/方向上均匀有界。因此,r尺度斑块场相关性也是有界的。我们还证明了在重合点的物理双斑场相关具有a - d UV奇异行为;与自由标量无标度场在重合点处导数的相关性相同。以自由标量情况为参考,我们得到了UV渐近自由的晶格表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Reports on Mathematical Physics
Reports on Mathematical Physics 物理-物理:数学物理
CiteScore
1.80
自引率
0.00%
发文量
40
审稿时长
6 months
期刊介绍: Reports on Mathematical Physics publish papers in theoretical physics which present a rigorous mathematical approach to problems of quantum and classical mechanics and field theories, relativity and gravitation, statistical physics, thermodynamics, mathematical foundations of physical theories, etc. Preferred are papers using modern methods of functional analysis, probability theory, differential geometry, algebra and mathematical logic. Papers without direct connection with physics will not be accepted. Manuscripts should be concise, but possibly complete in presentation and discussion, to be comprehensible not only for mathematicians, but also for mathematically oriented theoretical physicists. All papers should describe original work and be written in English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信