Utilizing neural networks to illustrate the dynamics of viscous fluid flow over curved surface with homogeneous and heterogeneous reactions

IF 7.5 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Abhishek Sharma , Ram Prakash Sharma
{"title":"Utilizing neural networks to illustrate the dynamics of viscous fluid flow over curved surface with homogeneous and heterogeneous reactions","authors":"Abhishek Sharma ,&nbsp;Ram Prakash Sharma","doi":"10.1016/j.engappai.2025.111629","DOIUrl":null,"url":null,"abstract":"<div><div>This study examines the influence of homogeneous-heterogeneous reactions and viscous dissipation on the magnetohydrodynamic (MHD) boundary layer flow over a curved stretching sheet, incorporating the effects of partial slip and a non-uniform heat source. Understanding these interactions is crucial for optimizing heat and mass transfer in industrial applications where precise thermal and solutal control are required. The governing partial differential equations are transformed into a system of coupled ordinary differential equations using similarity transformations and solved numerically via the Runge-Kutta method with a shooting technique. A comparative analysis with existing studies further validates the accuracy of the present findings, providing strength into flow control mechanisms and heat transfer enhancement strategies relevant to industrial thermal systems. Moreover, results indicate that increasing the magnetic field parameter increases the shear rate by 65.62 %, whereas thermal dissipation reduces the heat transfer rate by 13.63 %. Additionally, an Artificial Neural Network (ANN) model is employed to predict drag force, heat transfer, and mass transfer rates, achieving a validation accuracy exceeding 99 % with a mean squared error (MSE) of approximately 10<sup>−11</sup> and a regression coefficient (<em>R</em>) close to 1 for each case. Moreover, the inputs for predicting drag force are provided to the ANN by varying the values of curvature parameter <span><math><mrow><mo>(</mo><mrow><mi>K</mi><mrow><mo>(</mo><mrow><mn>1</mn><mo>−</mo><mn>5</mn></mrow><mo>)</mo></mrow></mrow><mo>)</mo></mrow></math></span>, magnetic parameter <span><math><mrow><mo>(</mo><mrow><mi>M</mi><mrow><mo>(</mo><mrow><mn>1</mn><mo>−</mo><mn>3</mn></mrow><mo>)</mo></mrow></mrow><mo>)</mo></mrow></math></span> and slip parameter <span><math><mrow><mo>(</mo><mrow><msub><mi>λ</mi><mn>1</mn></msub><mrow><mo>(</mo><mrow><mn>0.1</mn><mo>−</mo><mn>0.3</mn></mrow><mo>)</mo></mrow></mrow><mo>)</mo></mrow></math></span>, the heat transfer rate controlled by appropriately adjusting the parameters <span><math><mrow><mi>K</mi><mrow><mo>(</mo><mrow><mn>1</mn><mo>−</mo><mn>5</mn></mrow><mo>)</mo></mrow><mo>,</mo><mi>M</mi><mrow><mo>(</mo><mrow><mn>1</mn><mo>−</mo><mn>3</mn></mrow><mo>)</mo></mrow><mtext>,</mtext></mrow></math></span> heat source parameters <span><math><mrow><mo>(</mo><mrow><msup><mi>A</mi><mo>∗</mo></msup><mrow><mo>(</mo><mrow><mn>0.5</mn><mo>−</mo><mn>1.5</mn></mrow><mo>)</mo></mrow><mo>,</mo><msup><mi>B</mi><mo>∗</mo></msup><mrow><mo>(</mo><mrow><mn>0.1</mn><mo>−</mo><mn>0.4</mn></mrow><mo>)</mo></mrow></mrow><mo>)</mo></mrow></math></span> and Eckert number <span><math><mrow><mo>(</mo><mrow><mi>E</mi><mi>c</mi><mrow><mo>(</mo><mrow><mn>0.1</mn><mo>−</mo><mn>0.3</mn></mrow><mo>)</mo></mrow></mrow><mo>)</mo></mrow></math></span> and the solutal rate is determined by adjusting the parameters <span><math><mrow><mi>K</mi><mrow><mo>(</mo><mrow><mn>1</mn><mo>−</mo><mn>5</mn></mrow><mo>)</mo></mrow><mtext>,</mtext></mrow></math></span> Schimdt number <span><math><mrow><mrow><mo>(</mo><mrow><mi>S</mi><mi>c</mi><mrow><mo>(</mo><mrow><mn>3</mn><mo>−</mo><mn>6</mn></mrow><mo>)</mo></mrow></mrow><mo>)</mo></mrow><mtext>,</mtext></mrow></math></span> homogeneous and heterogeneous reaction parameters <span><math><mrow><mo>(</mo><mrow><msub><mi>k</mi><mn>1</mn></msub><mspace></mspace><mo>&amp;</mo><mspace></mspace><msub><mi>k</mi><mn>2</mn></msub><mrow><mo>(</mo><mrow><mn>0.1</mn><mo>−</mo><mn>0.25</mn></mrow><mo>)</mo></mrow></mrow><mo>)</mo></mrow></math></span>. The ANN predictions show strong agreement with numerical results, confirming the reliability of the model for real-world thermal engineering applications.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"159 ","pages":"Article 111629"},"PeriodicalIF":7.5000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197625016318","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This study examines the influence of homogeneous-heterogeneous reactions and viscous dissipation on the magnetohydrodynamic (MHD) boundary layer flow over a curved stretching sheet, incorporating the effects of partial slip and a non-uniform heat source. Understanding these interactions is crucial for optimizing heat and mass transfer in industrial applications where precise thermal and solutal control are required. The governing partial differential equations are transformed into a system of coupled ordinary differential equations using similarity transformations and solved numerically via the Runge-Kutta method with a shooting technique. A comparative analysis with existing studies further validates the accuracy of the present findings, providing strength into flow control mechanisms and heat transfer enhancement strategies relevant to industrial thermal systems. Moreover, results indicate that increasing the magnetic field parameter increases the shear rate by 65.62 %, whereas thermal dissipation reduces the heat transfer rate by 13.63 %. Additionally, an Artificial Neural Network (ANN) model is employed to predict drag force, heat transfer, and mass transfer rates, achieving a validation accuracy exceeding 99 % with a mean squared error (MSE) of approximately 10−11 and a regression coefficient (R) close to 1 for each case. Moreover, the inputs for predicting drag force are provided to the ANN by varying the values of curvature parameter (K(15)), magnetic parameter (M(13)) and slip parameter (λ1(0.10.3)), the heat transfer rate controlled by appropriately adjusting the parameters K(15),M(13), heat source parameters (A(0.51.5),B(0.10.4)) and Eckert number (Ec(0.10.3)) and the solutal rate is determined by adjusting the parameters K(15), Schimdt number (Sc(36)), homogeneous and heterogeneous reaction parameters (k1&k2(0.10.25)). The ANN predictions show strong agreement with numerical results, confirming the reliability of the model for real-world thermal engineering applications.
利用神经网络来说明具有均相和非均相反应的粘性流体在曲面上流动的动力学
本研究考察了均相-非均相反应和粘性耗散对弯曲拉伸片上磁流体动力学(MHD)边界层流动的影响,包括部分滑移和非均匀热源的影响。了解这些相互作用对于优化需要精确热和溶质控制的工业应用中的传热和传质至关重要。利用相似变换将控制偏微分方程转化为耦合常微分方程组,并采用龙格-库塔法求解。与现有研究的比较分析进一步验证了本研究结果的准确性,为与工业热系统相关的流动控制机制和传热增强策略提供了力量。结果表明,增大磁场参数可使剪切速率提高65.62%,而散热可使换热速率降低13.63%。此外,采用人工神经网络(ANN)模型预测阻力、传热和传质率,验证精度超过99%,均方误差(MSE)约为10−11,每种情况的回归系数(R)接近1。此外,通过改变曲率参数(K(1−5))、磁参数(M(1−3))和滑移参数(λ1(0.1−0.3))的值,为人工神经网络提供预测阻力的输入;通过适当调整参数K(1−5)、M(1−3)、热源参数(A∗(0.5−1.5)、B∗(0.1−0.4))和Eckert数(Ec(0.1−0.3))来控制传热率;通过调整参数K(1−5)、Schimdt数(Sc(3−6))来确定溶蚀率;均相和非均相反应参数(k1&k2(0.1−0.25))。人工神经网络的预测结果与数值结果非常吻合,证实了该模型在实际热工应用中的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering Applications of Artificial Intelligence
Engineering Applications of Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
9.60
自引率
10.00%
发文量
505
审稿时长
68 days
期刊介绍: Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信