Adaptive hybrid optimization for integrated project scheduling and staffing problem with time/resource trade-offs

IF 3.7 4区 管理学 Q2 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Muhai Hu , Yao Wang , Wendi Tian
{"title":"Adaptive hybrid optimization for integrated project scheduling and staffing problem with time/resource trade-offs","authors":"Muhai Hu ,&nbsp;Yao Wang ,&nbsp;Wendi Tian","doi":"10.1016/j.orp.2025.100346","DOIUrl":null,"url":null,"abstract":"<div><div>The integration of project scheduling and human resource allocation is crucial in modern project management, particularly in complex and resource-constrained environments. This study addresses the Integrated Project Scheduling and Personnel Staffing Problem (IPSPSP) with time/resource trade-offs by proposing a dual-objective optimization model that minimizes both project duration and personnel cost. To solve this problem, we introduce an adaptive hybrid algorithm combining the Non-dominated Sorting Genetic Algorithm II (NSGA-II) and Multi-Objective Particle Swarm Optimization (MOPSO). The algorithm employs hybrid encoding for activity modes, activity priority lists and personnel allocation plans, coupled with a hypervolume-based adaptive search mechanism to improve solution quality. Experimental results demonstrate that the adaptive hybrid algorithm outperforms standalone NSGA-II and MOPSO in generating schedules and optimizing resource allocation. This study makes significant contributions by presenting a novel integrated model tailored for projects, an effective adaptive hybrid optimization algorithm and a comprehensive performance evaluation, thereby advancing the field of integrated scheduling and staffing in project management.</div></div>","PeriodicalId":38055,"journal":{"name":"Operations Research Perspectives","volume":"15 ","pages":"Article 100346"},"PeriodicalIF":3.7000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research Perspectives","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214716025000223","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of project scheduling and human resource allocation is crucial in modern project management, particularly in complex and resource-constrained environments. This study addresses the Integrated Project Scheduling and Personnel Staffing Problem (IPSPSP) with time/resource trade-offs by proposing a dual-objective optimization model that minimizes both project duration and personnel cost. To solve this problem, we introduce an adaptive hybrid algorithm combining the Non-dominated Sorting Genetic Algorithm II (NSGA-II) and Multi-Objective Particle Swarm Optimization (MOPSO). The algorithm employs hybrid encoding for activity modes, activity priority lists and personnel allocation plans, coupled with a hypervolume-based adaptive search mechanism to improve solution quality. Experimental results demonstrate that the adaptive hybrid algorithm outperforms standalone NSGA-II and MOPSO in generating schedules and optimizing resource allocation. This study makes significant contributions by presenting a novel integrated model tailored for projects, an effective adaptive hybrid optimization algorithm and a comprehensive performance evaluation, thereby advancing the field of integrated scheduling and staffing in project management.
具有时间/资源权衡的综合项目调度和人员配置问题的自适应混合优化
在现代项目管理中,特别是在复杂和资源受限的环境中,项目调度和人力资源配置的整合是至关重要的。本研究通过提出一个双目标优化模型来解决时间/资源权衡的综合项目调度和人员配备问题(IPSPSP),该模型可以最小化项目持续时间和人员成本。为了解决这一问题,我们引入了一种结合非支配排序遗传算法(NSGA-II)和多目标粒子群优化(MOPSO)的自适应混合算法。该算法采用混合编码对活动模式、活动优先级列表和人员分配计划进行编码,并结合基于hypervolume的自适应搜索机制提高求解质量。实验结果表明,自适应混合算法在调度生成和资源优化分配方面优于独立的NSGA-II和MOPSO算法。本研究提出了一种针对项目的新型集成模型、一种有效的自适应混合优化算法和一种全面的绩效评估方法,从而推动了项目管理中集成调度与人员配置领域的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Operations Research Perspectives
Operations Research Perspectives Mathematics-Statistics and Probability
CiteScore
6.40
自引率
0.00%
发文量
36
审稿时长
27 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信