Crystal structure, enzymatic and thermodynamic properties of the Thermus thermophilus phage Tt72 lytic endopeptidase with unique structural signatures of thermal adaptation
Sebastian Dorawa , Katarzyna Biniek-Antosiak , Magdalena Bejger , Anna-Karina Kaczorowska , Karol Ciuchcinski , Agnieszka Godlewska , Magdalena Płotka , Gudmundur O. Hreggvidsson , Lukasz Dziewit , Tadeusz Kaczorowski , Wojciech Rypniewski
{"title":"Crystal structure, enzymatic and thermodynamic properties of the Thermus thermophilus phage Tt72 lytic endopeptidase with unique structural signatures of thermal adaptation","authors":"Sebastian Dorawa , Katarzyna Biniek-Antosiak , Magdalena Bejger , Anna-Karina Kaczorowska , Karol Ciuchcinski , Agnieszka Godlewska , Magdalena Płotka , Gudmundur O. Hreggvidsson , Lukasz Dziewit , Tadeusz Kaczorowski , Wojciech Rypniewski","doi":"10.1016/j.jsb.2025.108230","DOIUrl":null,"url":null,"abstract":"<div><div>We presents the discovery and molecular characterization of a novel lytic enzyme from the extremophilic <em>Thermus thermophilus</em> MAT72 phage vB_Tt72. The protein of 346-aa (MW = 39,705) functions as phage vB_Tt72 endolysin and shows low sequence identity (<37 %) to members of M23 family of peptidoglycan hydrolases, except for two uncharacterized endopeptidases of <em>T. thermophilus</em> phages: φYS40 (87 %) and φTMA (88 %). The enzyme exhibits lytic activity mainly against bacteria of the genus <em>Thermus</em> and, to a lesser extent, against other Gram-negative and Gram-positive bacteria. The protein is monomeric in solution and is highly thermostable (T<sub>m</sub> = 98.3 °C). It retains ∼ 50 % of its lytic activity after 90 min of incubation at 99 °C. Crystallographic analysis, at 2.2 Å resolution, revealed a fold characteristic of M23 metallopeptidases, accounting for 40 % of the structure. The remaining parts of the molecule are folded in a manner that was previously undescribed. The M23 fold contains a Zn<sup>2+</sup> ion coordinated by a conserved His-Asp-His triad, and two conserved His residues essential for catalysis. The active site is occupied by a phosphate or a sulfate anion, while the substrate-binding groove contains a ligand, which is a fragment of <em>E. coli</em> peptidoglycan. The common sequence-based criteria failed to identify the protein as (hyper)thermophilic. It is likely that the protein’s thermal stability is owed to peculiar features of its three-dimensional structure. Instead of trimmed surface loops, observed in many thermostable proteins, the catalytic domain contains two long loops that interlace and form an α-helical bundle with its own hydrophobic core.</div></div>","PeriodicalId":17074,"journal":{"name":"Journal of structural biology","volume":"217 3","pages":"Article 108230"},"PeriodicalIF":3.0000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047847725000656","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We presents the discovery and molecular characterization of a novel lytic enzyme from the extremophilic Thermus thermophilus MAT72 phage vB_Tt72. The protein of 346-aa (MW = 39,705) functions as phage vB_Tt72 endolysin and shows low sequence identity (<37 %) to members of M23 family of peptidoglycan hydrolases, except for two uncharacterized endopeptidases of T. thermophilus phages: φYS40 (87 %) and φTMA (88 %). The enzyme exhibits lytic activity mainly against bacteria of the genus Thermus and, to a lesser extent, against other Gram-negative and Gram-positive bacteria. The protein is monomeric in solution and is highly thermostable (Tm = 98.3 °C). It retains ∼ 50 % of its lytic activity after 90 min of incubation at 99 °C. Crystallographic analysis, at 2.2 Å resolution, revealed a fold characteristic of M23 metallopeptidases, accounting for 40 % of the structure. The remaining parts of the molecule are folded in a manner that was previously undescribed. The M23 fold contains a Zn2+ ion coordinated by a conserved His-Asp-His triad, and two conserved His residues essential for catalysis. The active site is occupied by a phosphate or a sulfate anion, while the substrate-binding groove contains a ligand, which is a fragment of E. coli peptidoglycan. The common sequence-based criteria failed to identify the protein as (hyper)thermophilic. It is likely that the protein’s thermal stability is owed to peculiar features of its three-dimensional structure. Instead of trimmed surface loops, observed in many thermostable proteins, the catalytic domain contains two long loops that interlace and form an α-helical bundle with its own hydrophobic core.
期刊介绍:
Journal of Structural Biology (JSB) has an open access mirror journal, the Journal of Structural Biology: X (JSBX), sharing the same aims and scope, editorial team, submission system and rigorous peer review. Since both journals share the same editorial system, you may submit your manuscript via either journal homepage. You will be prompted during submission (and revision) to choose in which to publish your article. The editors and reviewers are not aware of the choice you made until the article has been published online. JSB and JSBX publish papers dealing with the structural analysis of living material at every level of organization by all methods that lead to an understanding of biological function in terms of molecular and supermolecular structure.
Techniques covered include:
• Light microscopy including confocal microscopy
• All types of electron microscopy
• X-ray diffraction
• Nuclear magnetic resonance
• Scanning force microscopy, scanning probe microscopy, and tunneling microscopy
• Digital image processing
• Computational insights into structure