Existence and destruction of tori in a discontinuous oscillator under quasi-periodic excitations

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED
Pengcheng Miao , Jicheng Duan , Denghui Li , Jianhua Xie , Celso Grebogi
{"title":"Existence and destruction of tori in a discontinuous oscillator under quasi-periodic excitations","authors":"Pengcheng Miao ,&nbsp;Jicheng Duan ,&nbsp;Denghui Li ,&nbsp;Jianhua Xie ,&nbsp;Celso Grebogi","doi":"10.1016/j.physd.2025.134804","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the existence and destruction of invariant tori in a discontinuous oscillator under quasi-periodic excitation. For the conservative case, by constructing a quasi-periodic twist map, we prove the existence of infinitely many invariant tori and show that all solutions of the system are bounded when the frequencies satisfy the non-resonance condition. For the dissipative case, by taking a quasi-periodic forcing with two frequencies, we employ numerical methods to explore the breakdown mechanisms of torus attractors and multistability phenomena. The multistability includes the coexistence of multiple torus attractors and the coexistence of torus and chaotic attractors. In addition, we show that grazing bifurcations induce the destruction of torus attractors with the emergence of either chaotic attractors or strange nonchaotic attractors.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"481 ","pages":"Article 134804"},"PeriodicalIF":2.7000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925002817","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the existence and destruction of invariant tori in a discontinuous oscillator under quasi-periodic excitation. For the conservative case, by constructing a quasi-periodic twist map, we prove the existence of infinitely many invariant tori and show that all solutions of the system are bounded when the frequencies satisfy the non-resonance condition. For the dissipative case, by taking a quasi-periodic forcing with two frequencies, we employ numerical methods to explore the breakdown mechanisms of torus attractors and multistability phenomena. The multistability includes the coexistence of multiple torus attractors and the coexistence of torus and chaotic attractors. In addition, we show that grazing bifurcations induce the destruction of torus attractors with the emergence of either chaotic attractors or strange nonchaotic attractors.
准周期激励下不连续振子环面的存在与破坏
研究了准周期激励下不连续振子中不变量环面的存在性和破坏性。对于保守情况,通过构造一个拟周期扭转映射,证明了系统存在无穷多个不变环面,并证明了当频率满足非共振条件时,系统的所有解都是有界的。对于耗散情况,我们采用两个频率的准周期强迫,用数值方法探讨了环面吸引子的击穿机制和多稳定性现象。多稳定性包括多个环面吸引子的共存以及环面和混沌吸引子的共存。此外,我们还证明了放牧分岔导致环面吸引子的破坏,无论是混沌吸引子还是奇异的非混沌吸引子的出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信